
Non-First Order Degradation
and Time-Dependent Sorption
of Organic Chemicals in Soil

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



ACS SYMPOSIUM SERIES 1174

Non-First Order Degradation
and Time-Dependent Sorption
of Organic Chemicals in Soil

Wenlin Chen, Editor
Syngenta Crop Protection, LLC, Greensboro, North Carolina

Aleksandar Sabljic, Editor
Institute Rudjer Boskovic, Zagreb, Croatia

Steven A. Cryer, Editor
Dow AgroSciences, LLC, Indianapolis, Indiana

Rai S. Kookana, Editor
CSIRO Land and Water, Glen Osmond, Australia

Sponsored by the
ACS Division of Agricultural and Food Chemistry, Inc.

American Chemical Society, Washington, DC

Distributed in print by Oxford University Press

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Library of Congress Cataloging-in-Publication Data

Non-first order degradation and time-dependent sorption of organic chemicals in soil /
Wenlin Chen, editor, Syngenta Crop Protection, LLC, Greensboro, North Carolina,
Aleksandar Sabljic, editor, Institute Rudjer Boskovic, Zagreb, Croatia, Steven A. Cryer,
editor, Dow AgroSciences, LLC, Indianapolis, Indiana, Rai S. Kookana, editor, CSIRO,
Land and Water Flagship, Glen Osmond, Australia ; sponsored by the ACS Division of
Agricultural and Food Chemistry, Inc.

pages cm. -- (ACS symposium series ; 1174)
Includes bibliographical references.
ISBN 978-0-8412-2978-5
1. Soil absorption and adsorption. 2. Soils--Organic compound content. 3. Agricultural
chemicals--Biodegradation. 4. Organic compounds--Biodegradation. 5. Soil chemistry.
I. Chen, Wenlin, 1962- editor. II. Sabljic, Aleksandar, editor. III. Cryer, Steven A., editor.
IV. Kookana, Rai S., editor. V. American Chemical Society. Division of Agricultural and
Food Chemistry. VI. Title: Sorption of organic chemicals in soil.
S592.5.N66 2014
631.4′32--dc23

2014038715

The paper used in this publication meets the minimum requirements of American National
Standard for Information Sciences—Permanence of Paper for Printed Library Materials,
ANSI Z39.48n1984.

Copyright © 2014 American Chemical Society

Distributed in print by Oxford University Press

All Rights Reserved. Reprographic copying beyond that permitted by Sections 107 or 108
of the U.S. Copyright Act is allowed for internal use only, provided that a per-chapter fee of
$40.25 plus $0.75 per page is paid to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, USA. Republication or reproduction for sale of pages in this
book is permitted only under license from ACS. Direct these and other permission requests
to ACS Copyright Office, Publications Division, 1155 16th Street, N.W., Washington, DC
20036.

The citation of trade names and/or names of manufacturers in this publication is not to be
construed as an endorsement or as approval by ACS of the commercial products or services
referenced herein; nor should the mere reference herein to any drawing, specification,
chemical process, or other data be regarded as a license or as a conveyance of any right
or permission to the holder, reader, or any other person or corporation, to manufacture,
reproduce, use, or sell any patented invention or copyrighted work that may in any way be
related thereto. Registered names, trademarks, etc., used in this publication, even without
specific indication thereof, are not to be considered unprotected by law.

PRINTED IN THE UNITED STATES OF AMERICA

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Foreword
The ACS Symposium Series was first published in 1974 to provide a

mechanism for publishing symposia quickly in book form. The purpose of
the series is to publish timely, comprehensive books developed from the ACS
sponsored symposia based on current scientific research. Occasionally, books are
developed from symposia sponsored by other organizations when the topic is of
keen interest to the chemistry audience.

Before agreeing to publish a book, the proposed table of contents is reviewed
for appropriate and comprehensive coverage and for interest to the audience. Some
papers may be excluded to better focus the book; others may be added to provide
comprehensiveness. When appropriate, overview or introductory chapters are
added. Drafts of chapters are peer-reviewed prior to final acceptance or rejection,
and manuscripts are prepared in camera-ready format.

As a rule, only original research papers and original review papers are
included in the volumes. Verbatim reproductions of previous published papers
are not accepted.
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Chapter 1

Introduction

Wenlin Chen,*,1 Aleksandar Sabljic,2 Steven A. Cryer,3
and Rai S. Kookana4

1Syngenta Crop Protection, LLC, P.O. Box 27419-8300,
Greensboro, North Carolina 27419-8300, U.S.A.

2Department of Physical Chemistry, Institute Rudjer Boskovic,
POB 180, HR-10002 Zagreb, Croatia

3Dow AgroSciences, LLC, 9330 Zionsville Road,
Indianapolis, Indiana 46268, U.S.A.

4CSIRO, Land and Water Flagship, PMB 2, Glen Osmond 5064, Australia
*E-mail: Wenlin.chen@syngenta.com.

Pesticides are essential tools for crop protection and disease
prevention. These agricultural chemicals (and their associated
uses) continue to be subject to increased regulatory scrutiny,
even though modern pesticides have become safer, more
effective, and target specific. Pesticide persistence, off-target
movement to ground and surface water systems, and potential
for impacting non-target organisms are the major focus for
regulatory assessments. Sorption and degradation are among
the dominant processes that determine the fate and ecological
risk of pesticides in the environment. This book addresses
pesticide sorption and degradation processes in the context
of regulatory evaluation, yet with a special focus on the
chemistry-soil-environment interactions to better quantify the
increasingly observed non-first-order and time-despondent
behavior in the environmental fate studies.

Degradation of agricultural chemicals is commonly described by pseudo
first-order (PFO) kinetics, with the underlying assumption that the rate of
degradation is only proportional to the concentration of the degrading compound.
The other “reactant” (or reactants) involved in the degradation process is

© 2014 American Chemical Society
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assumed to be invariant or can be effectively incorporated into the PFO rate
constant. For enzyme-catalyzed degradation or biodegradation, the process
may become rate-limited when the substrate (i.e. the chemical of interest) is
not freely available to microbial metabolism (1), resulting in poor fit of the
PFO kinetics to experimental observations. This is particularly true when
sorption and diffusion are prominent in controlling mass transfer between the
cell surfaces and microbial-absent regions in soil where chemicals are adsorbed,
bound or physically entrapped (e.g., in inter-/intra-particle micropores). In
such cases, non-first-order degradation and time-dependent sorption may occur
simultaneously. Non-first-order degradation may also be induced by microbial
dynamics when bioactivity fluctuates over the course of a laboratory study or
due to temperature/moisture and/or other agronomic and environmental changes
under field conditions.

A common practice to describe pesticide sorption (physical and/or chemical
process by which the pesticide becomes bound to a solid substrate) is to assume
equilibrium (steady state) during partitioning between the solution and solid
phases. In contrast, time-dependent sorption typically describes the process
of increasing sorption (or decreasing in a desorption mode) of an organic
compound with time in soil. Various physical/chemical mechanisms responsible
for time-dependent sorption may include inter-/intra-particle micropore diffusion,
surface site adsorption, partitioning, and hydrogen or chemical bonding (2–4).

When non-first-order degradation and time-dependent sorption exist, the
conventional PFO and equilibrium sorption approaches may not be adequate
predictors of the fate and transport behavior of agriculturally important chemicals.
The recent publications (5, 6) of regulatory guidance for calculating non-first-order
kinetics for pesticide environmental risk and exposure assessments, both in the
European Union (EU) and North America Free Trade Agreement (NAFTA),
have renewed the interest in refining the measurements, interpretation and use of
kinetic data. This ACS book summarizes the combined work recently presented
at the 246th ACS National Meeting symposium of Non-First-Order Dissipation
and Time-Dependent Sorption of Organic Chemicals in Soil: Measurement,
Modeling, and Impact on Environmental Exposure Predictions, September 8 - 12,
2013, Indianapolis, Indiana, USA; and the findings from the International Union
of Pure and Applied Chemistry (IUPAC) research project (2010-018-2-600):
Review of Pesticide Environmental Fate Parameters and Their Quantitative
Relationship with Soil and Climate Conditions (7). Conventional and novel
approaches for time-dependent sorption and degradation presented in this book
will benefit a large audience of readers, including the regulatory community,
academia, government, and industry scientists.

The chapters are arranged according to the three general topics as illustrated
in the diagram below. The book starts (Chapter 2) with the interactions
of the fate processes (sorption and degradation) and their relationship with
chemistry (quantitative structure-activity relationship, or QSAR) and the soil and
environmental conditions (Chapters 3, 4, and 5). Evaluation of current NAFTA
regulatory kinetics guidance and an overview of using time-dependent sorption
studies in EU regulatory exposure assessment are provided in Chapters 6 and
7, respectively. Approaches for data delineation of degradation kinetics and
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parameterization are presented in Chapters 8, 9, and 10. New experimental design
and methods to measure and quantify time-dependent sorption and irreversibility
are described in Chapters 11, 12, 13, and 14. The last section of the book is
dedicated to the development of the coupled sorption and degradation kinetics
on the EU FOCUS-PRZM model (Chapter 15) and followed by several model
evaluation and validation case studies to demonstrate the impact of non-first-order
degradation and time- and soil-dependent sorption on the overall environmental
fate and transport processes in field conditions (Chapters 16, 17, and 18).

It is anticipated the state of knowledge and information presented in this book
will provide the foundation for stimulating discussion and development of new
approaches, leading to more accurate pesticide environmental fate and exposure
predictions through improved study measurements, model parameterization, and
use of sound kinetics of degradation and sorption algorithms. We realize that the
conventional use of the PFO kinetics and instantaneous sorption assumptions
has its advantages and may be valid in many cases. However, the text presented
here, including discussion of new experimental methods, analysis of kinetics,
structure-activity relationships, and refined modeling tools will provide valuable
insights to the reader on this topic. We hope that this book will be useful to
the broad agrochemical research community including environmental scientists,
risk assessors/regulators, students, and general practitioners in environmental
exposure, risk assessment, and risk management.
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Chapter 2

Coupled Sorption and Degradation Kinetics
and Non-First Order Behavior

Wenlin Chen,*,1 Volker Laabs,2 Rai S. Kookana,3
and William C. Koskinen4

1Syngenta Crop Protection, LLC, P.O. Box 18300,
Greensboro, North Carolina 27419-8300, U.S.A.
2BASF SE, Crop Protection, Speyerer Straße 2,

D-67117 Limburgerhof, Germany
3CSIRO Land and Water, PMB 2, Glen Osmond,

Adelaide, South Australia 5064, Australia
4University of Minnesota, Soil, Water, and Climate, 6028A,

1991 Upper Buford Circle, St. Paul, Minnesota, 55108, U.S.A.
*E-mail: wenlin.chen@syngenta.com.

The spatial distribution of organic compounds in the
microscopic soil/pore-water system due to sorption has
fundamental implications on determining first-order or
non-first order behaviour and assessing bioavailability/
biodegradability. If only the fraction of the organic compounds
in the microbe-accessible region (e.g., soil pore water) is
directly subject to intracellular transformation, sorption into
microbe-absent regions (e.g., intra-particle/intra-aggregate
micro-pores/interstitial spaces) may become rate-limiting to
biodegradation, thus a non-first order decline may be expected
in the soil-water system. In this paper, several data sets
with direct measurements of soil pore water concentrations
are used to elucidate the effect of sorption/desorption on
biodegradation. Macro rate constants equivalent to the Double
First-Order in Parallel (DFOP) model are derived for gauging
the non-first order behavior and for calculating the micro
kinetic rate constants of sorption and biodegradability from
standard laboratory soil metabolism and batch sorption studies.
Two new bioavailability factors (short-term and long-term)
are developed to delineate the confounding effect of sorption
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and a compound’s specific biodegradability on the overall
degradation rate in the bulk soil system. The bioavailability
factors are shown to be useful in the development of predictive
regressions for degradation using soil and environmental
factors. Discussions on data interpretation and implications for
coordinated study designs of different fate studies are provided.

Introduction

Many published and regulatory required soil metabolism studies have
shown that microbial degradation of pesticides can be a non-first order process.
Various non-first order degradation models have been proposed to best fit data
and to derive representative or worst-case half-life values in order to satisfy
the input requirement of the regulatory models for environmental exposure and
risk assessments (1, 2). None of these models, however, are mechanistically
based, i.e., they are difficult to use for interpreting the observed data and lack of
insight into the underlying processes which require cross-examination of other
environmental fate studies such as sorption. The aim of this chapter is to offer
an approach that couples the two most important fate processes, sorption and
degradation, and delineates the effects of soil and other environmental conditions
on non-first order behavior.

Interaction between sorption and degradation of organic chemicals in soil is
not a new phenomenon. The root cause of the interdependent relationship is the
microscopic heterogeneity in distributions of chemical substrates and microbial
degraders in the soil pore that prevents metabolism from occurring at the right
place and right time. On a microscopic soil pore scale, sorption separates substrate
(pesticide) from its degrader (microorganisms) by mass transfer (primarily via
diffusion) of the substrate molecules to the soil intra-aggregate/intra-particle
pores/interstitial space or organic matrix where microbial assess is limited. Soil
micro pores with diameters <0.1 μm are abundant while typical size of indigenous
bacteria is larger than 0.5 μm in diameter3. Bacteria (single or in colonies)
typically inhabit in soil pores >= 2 μm in diameter and the majority of soil pores
are smaller than this size with soil moisture content at field capacity levels (3,
4). As a result, physical exclusion of microbes from the micro pores/interstice
of soil particles/micro-aggregates may imply that only the fraction of organic
compounds in the microbe-accessible region (e.g., in the bulk soil solution or
aqueous phase) may be directly subject to intracellular transformation (3–6). This
may also include substances sorbed (reversible or irreversible) into the organic
matrix in the microbe-accessible regions such as larger pores or micro surfaces
in desolate areas. Mass transfer of organic compounds from the microbe-absent
regions (or sorbed phase as a general term) thus may become a rate-limiting step
to microbial degradation in the soil pore system.

Conceptually, sorption and degradation are initially two competing processes
for available molecules in soil pore water when a compound is freshly applied
(Figure 1). As more molecules become adsorbed and transferred via diffusion in
to the micro pores or intra-particle structure inaccessible to microbes, degradation
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rate in the aqueous phase may become limited/controlled by the release speed
from the microbial absent zones depending on the intrinsic biodegradability of
the compound.

Figure 1. Sorption and biodegradation as a function of environmental factors
and their mutual relationship in the soil-pore water system.

Soil variables influencing both pesticide sorption and degradation processes
may operate in two ways: (i) variables that predominantly influence the sorption
of substances and thereby change the availability of substances for degradation
(7); and (ii) variables that indeed influence sorption and degradation processes
independently from each other. Sometimes these two mechanisms may not be
differentiated easily, as soil parameters are often interrelated and may thereby
influence degradation predominantly via their correlation with soil sorption. The
independent and/or interrelated soil and environmental variables can influence
the interactions between degradation and sorption differently under different
macroscopic conditions. Therefore, delineating the exact impacts by various
variables requires a detailed description of the two interacting processes in the
micro soil-water environment.

In this chapter, we first present a set of mathematical solutions for the coupled
sorption and degradation kinetics. Several published literature data sets with
direct measurements of soil pore water concentrations are used to elucidate the
effect of sorption on degradation. Two macro rate constants equivalent to the
Double First-Order in Parallel (DFOP, FOCUS Guidance) are defined and used to
measure system deviation from first-order and to estimate micro rate parameters
from standard laboratory soil metabolism and batch sorption studies. Two new
bioavailability factors are proposed to help delineate the coupled influence of
sorption and biodegradability on the overall degradation of the bulk soil system.
Attempt is also made to investigate predictive relationships of degradation rates
with the new bioavailability factors and soil/environmental variables available
from published literature data.

For the sake of simplicity, we use degradation interchangeably with
biodegradation on the understanding that degradation through abiotic processes
such as hydrolysis is not considered in the context of the discussion herein and
that the final breakdown product is not necessarily CO2.
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Theory

The interactions between sorption and degradation on the pore scale can be
conceptualized as a two-step process (Figure 2): 1) mass transfer between the
sorbed phase and microbial cell surface in the bulk solution; and 2) biological
uptake and transformation (8). For chemicals in the sorbed phase, mass transfer
primarily involves desorption (i.e., from the sorbing surfaces inside the nano/micro
pores or interstice) and diffusion to the bulk soil solution where microbial colonies
reside. For chemicals in the bulk soil solution, the mass transfer process plays a
competing role for the dissolved molecules by diffusion into the microbial-absent
regions and/or adsorption onto the micro surfaces of soil particles.

Figure 2. Schematic representation of the soil pore scale distributions of
pesticide molecules and microorganisms in the soil-water system (left). The
concentration-time course on the right was simulated by Eqs. 5-8 (with

parameters: f=0.2, μw=0.1 d-1, α=0.01 d-1, Kd=2 ml/g, and ρ/θ=3.25 g/cm3).
Concentrations in the aqueous phase (C) and on the instantaneous sorption sites
(S1) decrease faster than the total bulk soil concentration (Ct) which exhibits
a clear non-first order decline due to the formation (adsorption) and decline
(desorption) on the time-dependent sorbed phase (S2). (see color insert)

A pseudo first order (PFO) reaction can be used to simplify the lumped
microbial uptake and subsequent intra-cellular transformation process given that
concentrations of organic chemicals are generally low in the bulk soil solution
(8). Since degradation on the sorbed phase is expected to be minimal, the mass
balance of an organic chemical in a bulk soil unit can be written:
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Where C is concentration in the dissolved phase; μg/L; S is concentration in
the adsorbed phase, μg/g; θ is volumetric soil moisture content, cm3/cm3; ρ is
soil bulk density, g/cm3; μw is degradation rate constant in the soil pore water or
aqueous phase, day-1; t is time, day.

The sorption term (S) in Eq. 1 is described by a two-site kinetics model, which
takes into account the bi-phasic behaviour commonly observed in the adsorption-
time curve where the initial portion of adsorption takes place quickly and is then
followed by a gradual time-dependent phase (9–14). The first type of sorption
site(s) (denoted as S1) is presumably related to the sorbing regions/micro surfaces
directly exposed to the soil bulk solution so that sorption in these areas may reach
local equilibrium almost instantaneously. The second type of sorption sites (S2)
may represent the sorbing regions inside the micro pores/interstice where diffusion
through the micro tortuous space/channels is a slow time-dependent process (15).
Assuming Freundlich equilibrium sorption for S1, the two-site sorption model can
be expressed as the equations below:

Where S1 is the amount sorbed at the equilibrium sorption sites, μg/g; S2 is
the amount sorbed at the time-dependent sorption sites, μg/g; f is soil fraction of
the equilibrium sorption sites, dimensionless; Kf is Freundlich sorption coefficient
when ultimate sorption equilibrium is reached, unit dependent on S1 and C; n is
Freundlich constant; α is desorption rate constant (or mass transfer coefficient),
day-1. Other variables are defined in Eq. 1. For linear sorption isotherms (i.e.,
n=1), the Freundlich coefficient Kf is traditionally termed as sorption partition
coefficient and denoted by Kd (unit: ml/g). When Kd is normalized by soil organic
carbon, the resulting parameter is denoted as Koc (unit: ml/g).

For linear equilibrium sorption, Eqs. 1-4 can be solved analytically with initial
conditions (i.e., at t=0, C=C0; S1= fKdC0; and S2=0) (16–18). For consistency
and complete expressions of defined parameters and variables, several closed-form
solutions of key variables are provided below:

9

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Where Ct is total bulk soil concentration, μg/g; Ct0 is initial concentration
in bulk soil, μg/g; A, λl1 and λ2 are three “lumped” macro constants which are
determined by the micro kinetic parameters α and μw and associated equilibrium
sorption properties below:

By definition, f = S1/( S1+ S2) when the overall sorption equilibrium is reached
at both S1 and S2. It is easy to show that

where Kd1 is the sorption partition coefficient at the instantaneous sorption sites.
Kd1 may be estimated as the measured S/C ratios in a short time period such as
24-hr in the commonly adopted batch equilibration studies.

The coupled kinetics (Eqs. 5-8) reduces to a first order process when the
sorption rate constant α is 0 (and f=1) or when it is significantly small comparing
to the aqueous phase degradation rate constant μw. In this case, λ1 becomes 0
(or approximates to 0) and the equations reduce to a single term of exponential
decay. When time-dependent sorption exists, the model is able to predict
separate concentrations in the aqueous phase (C) and on the instantaneous and
time-dependent sorption sites (S1, and S2) (Figure 2, right panel). Concentration
declines in the aqueous phase (C) and on the instantaneous sorption sites (S1)
are typically faster than the total bulk soil system (Ct) due to degradation in the
aqueous phase and continuing sorption at the time-dependent sorption sites (S2).
Formation (adsorption) and decline (desorption) can simultaneously take place
on S2, which contributes to the total system non-first order behavior.

Data Sets
Experimental data obtained from seven published laboratory incubation

studies (16, 17, 19–23) (Table1) are used to evaluate the coupled kinetics and the
related bioavailability and biodegradability concepts in later sections. Published
data of soil column leaching studies are not included given their relatively short
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experimental time period (typically in hours) and saturated conditions. Four
of the seven studies (16, 17, 19, 20) have used the coupled kinetics model for
their data analysis, so their results of model parameters are directly cited here.
Three other studies, one by Shelton and Parkin21 and two by Krieger et al. (22,
23) (Table 1), did not use the coupled kinetics model but reported the complete
measurement data of time-dependent sorption and degradation. Therefore, these
published data are used in the current work to fit the coupled kinetics. A brief
description of the model-fitting process and the resulting parameters for each of
the three studies are provided below.

Table 1. Summary of Published Studies with Complete Measurements of
Sorption and Degradation Kinetics Used in Current Analysis

Study Chemical
No.
of
soils

Treatment conditions

Beulke et al. (16)
Ethofumesate

and
Metazachlor

2
Incubation temperature 20 °C; soil
moisture at 60% field holding capacity
(FHC).

Guo et al. (17) 2,4-D 1

Soil amended with 4 different levels
of activated carbon (AC); only data
for treatment without AC were used.
incubation temperature at 24 °C; soil
moisture at field capacity.

Krieger et al. (22)

Oryzalin and
metabolites
(only parent
data used)

4 Incubation temperature 25 °C; soil
moisture at 100 kPa.

Krieger et al. (23)

Florasulam and
a metabolite
(only parent
data used)

3*
Incubation temperature ranged from 5
to 35°C; four different soil moisture
levels at 40% FHC, 0, 0.05 and 15 bar.

Heiermann et
al. (19) Chlorotoluron 1

Four incubation temperature treatments
at 1, 10, 20, and 30 °C; and 3 soil
moisture treatments (40%, 60%,

and 80% FHC).

Shaner et al. (20) Mesotrione 4 Incubation temperature 25 °C; soil
moisture at 105% FHC.

Shelton and
Parkin (21) Carbofuran 1 Incubation temperature 26 °C; and 5 soil

moisture treatments (10-20%, Table 1).
* Only data for two soils (Marcham sandy clay loam and Naicam-Hoodoo clay loam) with
apparent Kd measurements are used.
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Shelton and Parkin Study (21)

The study was conducted on a Hatsboro silt loam (1.5% OM, and pH 6.05)
at five different soil moisture levels (20%, 17.5%, 15%, 12.5, and 10%). All
samples were incubated under constant temperature 26 °C. Concentrations of
carbofuran both in soil pore water (C) and on the sorbed phase (S) were measured
with soil solution samples extracted by a mechanical pressing technique. Detailed
descriptions of the experiments, analytical method, and resulting data are available
in Shelton and Parkin21.

Table 2. Measured and Newly Fitted Parameters from the Shelton and
Parkin Carbofuran Soil Degradation Study (21). The Coupled Kinetics
Was Simultaneously Fitted to the Measurement Data of Both Apparent Kd
(Denoted as KdA) and the Soil Solution Concentration C (Two R2 Values

Were Provided).

Gravimetric Soil
Water Content

(%)

Measured
Bulk Soil
DT50 (d) *

μw (d-1) α (d-1) Kd§

(ml/g) f¥ R2

20.0 4.1 0.25 0.049 0.17 0.35 KdA: 0.94
C: 0.85

17.5 4.0 0.30 0.025 0.17 0.41 KdA: 0.94
C: 0.83

15.0 4.6 0.31 0.016 0.17 0.59 KdA: 0.95
C: 0.85

12.5 7.4 0.15 0.026 0.17 0.35 KdA: 0.95
C: 0.96

10.0 13.9 0.08 0.102 0.10 0.39 KdA: 0.96
C: 0.98

* Based on the measured % C14 applied (total of sorbed and aqueous phases). § Sorption
equilibrium Kd (0.17 ml/g) was measured in the air-dry soil 21-day incubation treatment
except the lowest moisture 10% treatment for which the Kdwas fitted from the data. ¥ The
fraction of instantaneous sorption (f) was taken as the ratio of the Day 0 measured S/C to
Kd (Eq. 14).

The coupled kinetics was fitted simultaneously to themeasured concentrations
of carbofuran in soil solution and the corresponding ratios of S/C at each
sampling point. Results of the best-fit parameters are provided in Table 2. In the
optimization process, except the lowest moisture treatment (10%), the equilibrium
sorption partition coefficient (Kd) was fixed to the observed value (0.17 ml/g) from
the air-dry soil treatment after 21-day incubation where microbial degradation
was found minimal (21). The Kd value for the lowest moisture treatment had
to be optimized from the data in order to have a best model fit. The fraction of
instantaneous sorption sites (f) were taken as the ratio of the apparent Kdmeasured
on Day 0 to the ultimate equilibrium Kd based on Eq. 14.
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Krieger et al. Studies (22, 23)

The first Krieger et al.study (22) was conducted for oryzalin and its degradates
on four soils in batch incubation at 25 °C (Table 3). Only parent oryzalin data are
used in this work. Total soil concentration declines were measured at eight time
points from Day 0 to Day 183 after oryzalin treatment. Beginning on Day 15,
apparent Kd was measured at six sampling time points by 24-hr desorption with
0.01 N CaCl2 as the ratio of the total organic solvent-extracted amount (i.e. S) to
the CaCl2-water extract. Ratios of the 24-hr desorption to 5-minute desorption
were also reported but are not used for the model fitting exercise. To obtain the
parameters of the underlying degradation and sorption kinetics, the measured
total soil concentrations and apparent Kd values at each sampling point were
simultaneously fitted to the model. Results are reported in Table 3.

The second Krieger et al. study (23) dealt with degradation and sorption
of florasulam and its degradate under different temperature and soil moisture
conditions. Again, only parent florasulam data are interested in this work. Three
soils (Cuckney, Marcham, and Naicam-Hoodoo) were involved in the study.
Only Marcham and Naicam-Hoodoo had apparent Kd measurements in addition
to total soil concentration declines. As a result, the Cuckney data are not used in
our analysis. The Marcham soil had five different temperature treatments and the
Naicam-Hoodoo had four, all at the 40% field holding capacity (FHC) moisture
level (Table 3). At 20 °C, the Marcham soil had additional three soil moisture
treatments at 0, 0.05 and 15 bar. The apparent Kd measurements were only
available for the treatments of 40% FHC at 10 °C and 20 °C for Marcham, and
40% FHC at 20 °C for Naicam-Hoodoo. Study details and results are available
in Krieger et al. (23).

Given the multi-treatments and limited apparent Kdmeasurements, a stepwise
model fitting procedure is adopted. A full 4-parameter fit (μw, α, Kd, and f, Table
3) of the coupled kinetics are first applied to the three treatments of Marcham and
Naicam-Hoodoo having apparent Kd data. The fitted sorption-related parameter
values (α, Kd, and f) are then fixed and 1-parameter fit (μw) is subsequently
performed for different temperature treatments of corresponding soils. This step
assumes negligible sorption change under different temperature conditions. For
the three different moisture treatments on the Marcham soil at 20 °C, no parameter
fitting is made. Instead, these data are used to directly compare to the model
calibrated at 40% FHC at 20 °C. Results of the best-fit parameters are reported in
Table 3. Discussions are provided in the later sections.

Results and Discussion

Data-Model Comparison

Many plots of the data-model comparisons were made available from the cited
publications (16, 17, 19, 20), thus they are not duplicated here. An example of the
newly model fitted data set of Krieger et al. (23) is displayed in Figure 3. The
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model describes the observed data sufficiently well. An interesting trend in the
apparent Kd is that it has not shown a plateau after 60 days, indicating that the
rate of degradation in the aqueous phase was fast and had not been completely
limited by the slower desorption during the time period. The continuing increasing
apparentKd is attributed to the rapid decline of concentrations in the soil pore water
due to degradation.

Figure 3. Measured and model-predicted total soil concentrations (left) and
apparent Kd (right) of florasulam in a Naicam-Hoodoo clay loam at 20°C and
40% field holding capacity moisture content. Model parameters are provided in

Table 3. Study data: Krieger et al. (23).

To illustrate a model comparison with more elaborated measurements of
soil pore water and the sorbed mass using centrifugation technique at near field
capacity levels, the recent batch incubation study by Shaner et al. (20) is used.
In this study, mesotrione degradation was investigated for four different soils.
Results of the study showed that the coupled kinetics were able to predict the
measured individual declines in the pore water and on the sorbed phase generally
well (Figure 4; only one soil is shown). Since the measured sorbed phase
concentrations included both instantaneous and time-dependent sorption, the
total sorbed amount (S1+ S2) was plotted in the figure. Although the total amount
of sorption (black dash line and circles) was initially overestimated and later
underestimated by the model, there was no direct data to show this was related
to the quantity of S1 or S2, or both. Mathematical constraints of the optimization
process were quite strong since individual declines had to be fitted simultaneously
to avoid over-fitting of one process over another. Consistent with the simulation
in Figure 2, the measured dissipation in pore water was fast due to degradation
and sorption. The total bulk soil system demonstrated a clear non-first order
decline. Detailed results for other soils are available in Shaner et al. (20).
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Table 3. Measured and Newly Model-Fitted Parameters for Oryzalin and Florasulam from the Studies by Krieger et al. (1998
and 2000) (22, 23). Full Model Fits (with 4 Parameters) Were Applied to Soils with Available Measurements of Both Apparent Kd
(denoted as KdA) and the Total Soil Concentration Ct (Two R2 Values below). When only Ct Data Available, One Parameter (μw) Was

Fitted and Other Sorption Parameters Were Held Constant to the Values from the Corresponding Full Model Fits.

Soil T (°C) Gravimetric Soil
Water Content (%)

Measured
Bulk Soil
DT50 (d)

μw (d-1) α (d-1) Kd (ml/g) f R2

Oryzalin Study22

Fox Sandy Loam§ 25 7.9* 42 1.086 0.00807 5.75 0.85 KdA: 0.95
Ct: 0.99

Traver Loam§ 25 17.8* 25 1.005 0.01425 6.87 0.96 KdA: 0.96
Ct: 0.97

Hanford Sandy Loam§ 25 8.5* 24 2.643 0.00091 8.05 0.95 KdA: 0.96
Ct: 1.00

Millhopper sand§ 25 2.2* 176 1.416 0.00061 12.89 0.59 KdA: 0.86
Ct: 0.84

Florasulam Study23

Marcham sandy clay
loam§ 10 21.4 23 0.196 0.0169 2.09 0.30 KdA: 0.93

Ct:1.00

Marcham sandy clay
loam¥ 5 21.4 18 0.196 0.0169 2.09 0.30 Ct: 0.85

Marcham sandy clay
loam§ 20 21.4 4.1 0.715 0.0071 2.09 0.30 KdA: 0.98

Ct: 0.95

Continued on next page.
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Table 3. (Continued). Measured and Newly Model-Fitted Parameters for Oryzalin and Florasulam from the Studies by Krieger et al.
(1998 and 2000) (22, 23). Full Model Fits (with 4 Parameters) Were Applied to Soils with Available Measurements of Both Apparent
Kd (denoted as KdA) and the Total Soil Concentration Ct (Two R2 Values below). When only Ct Data Available, One Parameter (μw)

Was Fitted and Other Sorption Parameters Were Held Constant to the Values from the Corresponding Full Model Fits.

Soil T (°C) Gravimetric Soil
Water Content (%)

Measured
Bulk Soil
DT50 (d)

μw (d-1) α (d-1) Kd (ml/g) f R2

Marcham sandy clay
loam 15 21.4 7.4 0.403 0.0071 2.09 0.30 Ct: 0.88

Marcham sandy clay
loam 25 21.4 1.3 2.118 0.0071 2.09 0.30 Ct: 0.97

Naicam-Hoodoo clay
loam§ 20 31.1 8.5 0.601 0.0316 4.43 0.49 KdA: 0.97

Ct: 1.00

Naicam-Hoodoo clay
loam 35 31.1 1.7 3.203 0.0316 4.43 0.49 Ct: 0.99

Naicam-Hoodoo clay
loam 10 31.1 46 0.165 0.0316 4.43 0.49 Ct: 0.98

Naicam-Hoodoo clay
loam 5 31.1 85 0.079 0.0316 4.43 0.49 Ct: 0.98

* 75% of the field holding capacity. § Full 4-parameter fit. ¥ The 5 °C treatment of Marcham used the sorption parameters from the 4-parameter fit to the
10 °C treatment.
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Figure 4. Measured and model-predicted mesotrione concentrations in soil pore
water and on the sorbed phase of a Spinks loamy sand soil. Concentrations are
expressed as percent of total applied mass. Total concentrations in bulk soil are
the sum of the amount in the aqueous and sorbed pools in % applied. Measured

and modeled data are re-plotted based on results from Shaner et al. (20).

Figure 5. Simulated bulk soil concentration with three different rate constant
ratios (α/μw) of sorption to degradation in the soil aqueous phase. Other

parameters were the same as used in Figure 2: f=0.2, Kd=2 ml/g, and ρ/θ=3.25
g/cm3). (see color insert)
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Effect of Time-Dependent Sorption

One of the benefits with the coupled kinetics model is its ability to readily
delineate the effect of sorption on degradation. To do this, we can use the ratio
α/μw to measure the relative easiness (or bioavailability) of sorbed compound to be
released to the soil pore water and subsequently metabolized by microorganisms.
Larger ratios indicate relatively faster desorption than degradation so that mass
supply is sufficient for degradation in the soil pore water. To illustrate, simulated
concentrations in the total bulk soil system with three different rate constant ratios
of desorption to aqueous phase degradation (α/μw) are plotted in Figure 5. It is seen
that the total system concentration becomes less bi-phasic and follows first-order
more closely as the α/μw ratio increases to 1 (i.e., yellow line in Figure 5). Strong
bi-phasic decline (i.e., fast early decline followed by a slowed phase) is associated
with the two smaller α/μw ratios (blue and black lines), indicating rate-limiting
effect of desorption when sorption becomes relatively slower than degradation.

Figure 6. Effect of rate constant ratio (α/μw) on system non-first order behavior.
Other parameters used in the simulations are held constant at f=0.3, Kd=1 ml/g,

and ρ/θ=2.5 g/cm3.

It should be pointed out that the effect of sorption rate constant on the kinetic
behavior of degradation is not monotonic, i.e., the system can be approximately
first-order when the ratio α/μw becomes either significantly small or large (≥1).
Significantly small α/μwmeans that sorption is extremely slower than degradation,
resulting in the majority of the applied chemical in the soil aqueous phase (recall
adsorption rate is proportional to desorption by a factor of Kd) being available
for quick first-order microbial degradation. As illustrated in Figure 6, for a true
first-order process, theDT90/DT50 ratio is approximately 3.3 (dashed line), where
DT50 and DT90 are two degradation time points corresponding to 50% and 90%
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of total applied mass degraded, respectively. With everything else held constant,
large deviations from the 3.3 line occurred when α/μw is valued between 0.05 and
1.0 (Figure 6), indicating strong system non-first order behavior in this range.
However, this rangemay vary as it will be shown later that other system parameters
(such as θ, f and Kd) can alter the system non-first order behavior as well.

To examine the effect of α/μw with measured data, results of the Shaner et
al. study (20) with measured and model-predicted total system decline curves of
four soils are plotted in Figure 7. The data-fitted ratios (α/μw) are indicated on
each of the fitted curves by the coupled kinetics (black dash lines). As shown in
the figure, the coupled kinetics approach predicted the full time scale noticeably
better than the first-order model (solid pink lines) which underestimated the earlier
and overestimated the later measured concentrations (except the Haxton soil). For
the Haxton soil, the α/μw ratio was the smallest (0.013). The better fit with a first-
order model on this soil is consistent with the simulation study which shows that
first-order generally holds when the α/μw ratio falls outside of the range 0.05 to 1.0.

Figure 7. Measured (dots) and predicted (lines) total bulk soil concentrations in
the Shaner et al. study (20). Pink lines are fitted by first-order and the black lines
are by the coupled kinetics. Indicated in the figure are the ratios (α/μw) of sorption
rate constant to aqueous phase degradation rate constant. (see color insert)

Effect of Soil Moisture

Soil moisture plays a critical role in microbial survival by maintaining cell
hydration and serving as a medium for nutrient supply (24). Many studies have
found that pesticide degradation decreases as soil becomes drier (21, 25–27).
The decrease in degradation (represented by DT50) was found to follow a power
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function relationship with soil water content (25). In the coupled kinetics (Eqs.
5-8), soil water (θ) determines the micro space where microbial degradation takes
place. It is thus expected that a similar impact of soil water on the DT50 value
may be accounted for by the model and the overall non-first order behavior may
vary correspondingly.

To evaluate the effect, the coupled kinetics was simulated over a range of
soil moisture contents from 0.07 to 0.4 cm3 water/cm3 soil, with other parameters
held constant (Figure 8). Values of DT50 and the ratio of DT90/DT50 were
calculated for each simulation and plotted against the soil water content (θ) (all
other parameters were held constant). Results of the simulations show that DT50
decreases rapidly as θ increases, indicating faster degradation when soil is wetter
(Figure 8). Interestingly, the decline trend follows a power function, consistent
with the experimental observations by Walker (25) and others (27). Response of
the DT90/DT50 ratio to θ changes is not monotonic, thus moisture may increase
or reduce the deviation of the underlying kinetics from first-order in the presence
of time-dependent sorption.

Figure 8. Effect of soil moisture on microbial degradation. The green circles are
DT50 values obtained from simulations of the coupled sorption and degradation
kinetics (Eqs. 5-8) with variable soil moisture content (θ) ranging from 0.07 to
0.40 cm3/cm3). Other parameters were f=0.3, μw=0.1 d-1, α=0.01 d-1, Kd=1 ml/g,
and ρ=1.0 g/cm3). Red dots are DT90/DT50 values. The blue line was fitted by

the Walker power function between DT50 and soil water content.

The soil moisture effect observed from the model simulations is examined
with the published experimental data for carbofuran degradation by the Shelton
and Parkin study (21). Measured and modeled ratios of S/C (or apparent Kd) at
each sampling point are plotted in Figure 9 for the five different soil moisture
treatments (Table 2). The model-measurement comparison suggests that the
coupled kinetics describes the measured data reasonably well under the various
soil moisture conditions. The optimized aqueous phase degradation rate constants
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(μw, Table 2) are comparable among the first three high moisture treatments (15%
- 20%), ranging from 0.25 to 0.31 d-1. However, as soil moisture decreased to
below 15%, carbofuran metabolism in the soil aqueous phase becomes noticeably
prohibited, with the smallest degradation rate constant (0.08 d-1) corresponding
to the lowest moisture treatment at 10%. Similar results are reflected in the
measured total bulk soil DT50 values (Table 2). Interestingly, the response
of sorption kinetics to the five different soil moisture levels is not monotonic,
with the desorption rate constant (α) decreasing from 0.049 to 0.016 d-1 then
increasing to 0.102 d-1as soil moisture content progressively decreases from
20% to 10%. Sorption equilibrium parameters (Kd and f) also vary across
different treatments, indicating potential effect of sorption sites under different
soil hydration conditions.

Figure 9. Measured and modeled apparent Kd (KdA =S/C) values of carbofuran
at various time points after treatment in a Hatsboro silt loam in Shelton and
Parkin (21). Indicated in the figure are five different soil moisture levels in
the degradation study. Lines are predicted by the coupled kinetics model with

parameters reported in Table 2. (see color insert)

System equilibrium between degradation and sorption kinetics is not observed
in the measured and modeled apparent Kd values with the exception of the lowest
soil moisture treatment (10%) where there appears a plateau is reached at around
23 days after carbofuran application (Figure 9). As pointed out by Shelton and
Parkin (21), microbial degradation in the soil pore water was relatively faster
than desorption so that sorption was the “rate-limiting” factor at higher moisture
levels. With decreasing soil moisture, metabolism became progressively inhibited
due to desiccation of the carbofuran-hydrolyzing microorganisms, resulting in
the control of the overall process by the degradation kinetics. Consistent with
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these observations, comparison of the optimized kinetic rate constants in Table 2
provides a quantitative confirmation that the aqueous metabolism rates were much
faster than sorption when soil moisture content was higher. Metabolism became
much slower when soil moisture was below 15%, thus limiting the overall kinetics
in the total system.

The decrease of microbial metabolism in the soil pore water appeared to
follow the Walker power function relationship with moisture contents (Figure 10).
The same relationship also holds for the bulk soil DT50, which suggests that the
overall effect of soil moisture on degradation is twofold: 1) the amount of water
that directly influences the resulting amount of substance in solution available for
degradation; 2) at certain soil moisture limits (such as desiccation or anaerobic
conditions) where the microbial ability for substance degradation is impacted.
The first effect is taken into account by the coupled kinetics model directly as
shown in Figure 8. The second effect, however, requires the corresponding
change in the metabolism rate constant (μw) of the model to reflect the changes of
microbial activity under different soil water conditions.

Figure 10. Relationship of carbofuran degradation in soil pore water and total
bulk system with variable soil moisture contents. Data source: Shelton and

Parkin (21).

The moisture effect on the degradation of florasulam, however, was not found
as significant in the Krieger et al. study (22). As mentioned previously, four
different soil moisture treatments corresponding to 40% FHC, 0, 0.05 and 15 bar
on a Marcham sandy clay loam soil were designed in the study. Temperature for
these treatments was fixed at 20 °C. Using the calibrated parameters from the 40%
FHC treatment (corresponding to 20°C and 21.4% moisture in Table 3), the model
predicted very well the measured total soil concentration declines for the other
three moisture treatments at 40.6% (0 bar), 25.4% (0.05 bar) and 15.5% (15 bar) on
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the same soil (Figure 11, only the 15 bar treatment is shown). The minimal impact
of soil moisture on degradation in this studymay be attributed to the relatively high
moisture levels at which the soil was able to maintain even at the 15 bar pressure
(i.e. 15.5%). Recall that in the Shelton and Parkin study (21), significant decrease
in carbofuran degradation rate was observed only when soil moisture decreased to
below 15%.

Figure 11. Model independent predictions of florasulam degradation on a
Marcham sandy clay loam at 15.5% soil moisture content (15 bar) and 20 °C.
Model parameters were calibrated from a different treatment at 40% FHC

(21.4%). Data source: Krieger et al. study (22).

Relation to Double First-Order in Parallel.

It is interesting to observe that the analytical solutions for the concentration
in soil water (Eq. 5) and the total bulk soil system (Eq. 8) are both double
exponential decay, a decline pattern well observed in many soil metabolism and
field dissipation studies (28, 29). The model is also termed as Double First-Order
in Parallel (DFOP) by the EU FOCUS kinetics guidance document (2) and used by
the NAFTA technical guidance (1) for evaluating and calculating pesticide kinetics
parameters. DFOP is identical to Eq. 8 with different symbols to denote the macro
parameters:

where M is mass per unit volume of bulk soil; M0 is the initial value of M at time
0; k1 and k2 are two macro rate constants, day-1; g is the fraction of degradation
associated with rate constant k1.

Assuming k1 is the smaller rate constant in Eq. 15 (i.e., k1 <k2), Eqs. 8 and 15
becomes identical by setting A=g; λ1= -k1; and λ2= -k2. From the definition of the
proxy variable A (Eq. ), it is easy to show
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Eqs. 16 and 17 establish a method to estimate the two important parameters
in the coupled kinetics: sorption rate constant (α) and microbial metabolism
rate constant in the soil pore water (μw) using the fitted DFOP coefficients (g,
k1 and k2) and the sorption equilibrium parameters (f and Kd) measured for the
same soil. It is expected that this method is desirable since it does not require
direct measurement of the soil aqueous phase degradation, given that sorption
equilibrium parameters are relatively easy to measure. For example, the fraction
of the instantaneous sorption sites (f) can be taken as the ratio (i.e. Eq. 14) of
the Day 0 measured S/C to the ultimate equilibrium Kd which can be achieved
under long term incubation studies when degradation is minimized. Robustness
of the method may be achieved by coordinating soil metabolism and sorption
equilibrium studies on the same soil type and laboratory conditions.

It is intuitively expected that the two lumped macro rate constants (λ1 and λ2,
or, k1 and k2 in DFOP) may be used to measure the system non-first order behavior
(analogous to α/μw in previous section). Perfect first order is attained when the two
macro constants are equal or the ratio between them is 1. The closer the ratio is to
1, the better approximation of the kinetic system is to first order. The specific ratio
of λ2/λ1 is expected to be greater than 1 because the absolute value of the second
macro constant (λ2) is always larger than that of the first (i.e., λ1) based on Eqs. 9
and 10. In other words, for a clear non-first order decline, the second exponential
has to decay significantly faster than the first, exhibiting a pronounced biphasic
degradation pattern.

To investigate the system behavior under a wide range of possible
combinations of different equilibrium and kinetic parameters, a total of 5000
Monte Carlo simulations were conducted with the coupled kinetics model (Eqs.
5-8) assuming four independent and uniform probability distributions of Kd (0-10
ml/g), f (0-1), α (0-0.69 d-1), and μw (0-0.69 d-1). The ranges in parentheses are
the minimum and maximum values in each uniform distribution. Values of DT50
and DT90 and the corresponding macro rate constants (λ1 and λ2) were calculated
from each simulated decline curve of the bulk soil concentration.

Results of the DT90/DT50 ratios were plotted against the corresponding
ratios of λ2 to λ1 in Figure 12. Similar to the previous findings, there is no 1-to-1
monotonic relationship between the two sets of ratios. Generally, as the λ2/λ1
ratio increases, initial increasing deviation from first-order is observed despite
noticeable variability. However, continued increase in the λ2/λ1 ratio after near
50 reduces the deviation from the first order line and the system falls back to
approximately first-order. The DT90/DT50 ratios are at around 10 or smaller
when the λ2/λ1 ratio is near or less than 10 or greater than 50. We will show in
the next section that the system can be effectively approximated as a first order
process when the λ2/λ1 ratio falls within the two regions (i.e., λ2/λ1 ≤ 10, or ≥50).
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Figure 12. Effect of the macro rate constants in DFOP on system non-first order
behavior. Results were from 5000 Monte Carlo simulations with the coupled
kinetics assuming four uniform probability distributions of Kd (0-10 ml/g), f

(0-1), α (0-0.69 d-1), and μw (0-0.69 d-1). The ratio of soil bulk density to moisture
content (i.e., ρ/θ) was fixed at 2.5. Degradation times of DT50 and DT90 were
determined from the decline of total bulk soil concentration for each Monte

Carlo simulation.

Bioavailability Factor

The non-first order behavior is shown to be dependent not only on the relative
comparison of the macro or micro kinetic rate constants (i.e., λ2/λ1 and α/μw) but
also on the equilibrium parameters (f and Kd) and water content in the soil water
system. It would be useful if the effects of these influential factors can be integrated
into a single quantitative measure to gauge degradation under different conditions.
To this end, we rearrange Eq. 1 to give:

The expression in the denominator on the right side of Eq. 18 is a correction
factor for the aqueous phase metabolism rate constant (μw). That is, Eq. 18
becomes simple first order if we define a bioavailability factor (Bf) as:
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Eq. 18 is then simplified to a form of the first order model:

Equation 20 suggests that the overall effective degradation rate is determined
by the aqueous phase metabolism rate constant (μw) discounted by the
bioavailability of the compound at the time when microbial breakdown takes
place. The product Bf*μw is an effective rate constant of degradation while
the aqueous metabolism rate constant (μw) essentially represents the microbial
activity or optimal breakdown in the soil pore water (i.e. no rate-limiting by
sorption). The optimal rate constant (μw) is, therefore, a measure of potential
degradation or biodegradability inherent to a specific compound under given
temperature/moisture and microbial conditions.

It should be pointed out that Eq. 20 is a true first order only if Bf is constant,
such is the case when sorption is instantaneous and in equilibrium linearly with
local solution. In this case, dS2/dC=(1-f)Kd, and

In Eq. 21, Bf is a function of equilibrium sorption and the relative proportions
of soil and water in the system. It approaches unity when Kd is small, meaning
that for non-sorbing (or weekly sorbing) compounds, they are completely (or
approximately 100%) available to microbial transformation in the soil water
system. Correspondingly, for strong sorbing molecules, very large Kd diminishes
bioavailability, resulting in retarded microbial transformation in the liquid phase.
Interestingly, higher bioavailability may also be achieved in systems where the
proportion of the soil mass is relatively small to water (i.e., small ρ/θ such as in
an aerobic aquatic system). Experimental implications of this may lie with the
applicability of measuring biodegradability (μw) using an aquatic system such as
approaches often adapted in remediation studies where chemical biodegradability
is evaluated by inoculating specific microbial strains into aquatic test assays in
absence of environmental sediments (30, 31). Validity of similar study designs
to simulate the soil pore water environment, however, deserves more research,
especially in the aspects of dilution of the indigenous microorganisms and
achieving true aerobic conditions in laboratory aquatic setups.

Clearly, Bf is not a constant when time-dependent sorption exists. In this case,
the ratio dS2/dC in Eq. 19 is a function of time. However, constant Bf may be
derived for two asymptotic time points: short-term at time near 0, and long-term
when t approaches ∞. We denote the first as short-term bioavailability BfS, and the
second as a long-term one BfL.
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Short-Term Bioavailability Factor BfS.

In the early stage after a compound is applied to soil, majority of the chemical
(except strong and instantaneous sorbing molecules) is expected to be bioavailable
to microbial transformation as sorption continues with time relatively slowly. This
is often shown in the observed bi-phasic concentration decline of soil metabolism
studies where initial degradation is much faster than the later stage. The initial
bioavailability may be quantified from Eq. 19, assuming S2 is approximately 0 or
relatively small comparing to S1 in the early stage:

Long-Term Bioavailability Factor BfL.

For aged soil residues, desorption from the microbial-inaccessible sites
becomes more important in determining the bioavailability to microbial
breakdown in the soil pore water. Using the analytical solutions Eqs. 5 and 7, it
can be shown that

Substituting the ratio dS2/dC into Eq. 19 gives

Eq. 24 shows that BfL is a function of both equilibrium and kinetic sorption
parameters as well as the associated environmental conditions implicitly reflected
in the biodegradability (μw) and soil:water ratio (ρ/θ). The calculation is exact
when degradation in the soil pore water is completely limited by desorption.
This is equivalent to the case where μw is approximately equal to α. Using
this condition and assuming no instantaneous sorption (i.e., f=0), Zhang et al.
provided an approximation for Bf. As shown in Figure 13, the two approaches
converge as the ratio α/μw decreases. However, when sorption rate increases
relative to degradation (i.e., α/μw becomes larger), the Zhang et al. approximation
tends to under-estimate Bf.
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Figure 13. Comparison of bioavailability factors calculated by Eq. 24
(black circles) and the Zhang et al. approximation (orange diamonds),

after using consistent symbols for
Eq. 16 in Zhang et al. (32).

Relationship of Bf with Degradation Time

The parameter Bf is essentially a correcting factor for the metabolism rate
in the soil pore water to account for the effect of sorption and the associated
micro environmental conditions. For first order, degradation time (e.g., DT50
and DT90) is inversely related to the effective rate constant (i.e., Bf*μw). For
non-first order, the inverse relationship may vary as Bf is time-dependent due to
continuous sorption. It would be desirable to identify conditions under which
the underlying kinetics may be approximated by first-order and the inverse
relationship holds so that degradation parameters can be estimated by either the
short-term or long-term bioavailability factors defined above. Such relationships
would benefit regression studies aimed at predicting degradation with soil and
other environmental variables.

To investigate the Bf effect, results of the DT50 values obtained from each
of the 5000 Monte Carlo simulations as described in the previous section were
plotted as a function of the aqueous phase rate constant (μw, black circles) and
its two products with the short-term (μw*BfS) (orange circles on the left) and the
long-term bioavailability factors (μw*BfL) (orange circles on the right) in Figure
14. Two observations can be made from these simulations. First, DT50 is not
perfectly and inversely correlated with μw as it should hold for perfect first-order
kinetics. Significant variability exists in the relationship despite an overall inverse
trend over the 5000 simulations made with assumed distributions of equilibrium
and kinetic parameters. Second, the vast scatter suggests that neither the short-
term nor the long-term bioavailability factors can be used as a universal correcting
quantity to accurately reduce the underlying kinetics to a first-order equivalent.
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However, under certain conditions using the two macro rate constants, λ1 andλ2,
the two bioavailability factors can be quite effective to simplify a coupled sorption-
degradation system into a first order reaction as shown in Figures 15 and 16 below.

Figure 14. Degradation time (DT50) as function of biodegradability (μw) and the
short-term (BfS) and long-term (BfL) bioavailability factors. Open black circles
are plotted with μw on the bottom x-axis. Orange circles are plotted with the
effective rate constants as the products of (μw*BfS) or (μw*BfL) using the top
x-axis. Results were from 5000 Monte Carlo simulations described in Figure

11. (see color insert)

When the macro rate constant ratio (λ2/λ1) is equal to or less than 10, it is
quite significant to observe from Figure 15 that the scatter in data points coalesce
into a much better correlation of DT50 and DT90 associated with the short-term
bioavailability factor (i.e., μw*BfS) (orange circles). It can be shown that the
closer the (λ2/λ1) ratio is to 1, the more accurate the inverse relationship becomes,
indicating increasing robustness of the short-term bioavailability for reducing
degradation to first-order. The long-term bioavailability factor is relatively
less effective (results not shown). Kinetic sorption becomes less influential (or
rate-liming) on degradation as the (λ2/λ1) ratio approaches to unity. In these cases,
degradation kinetics is expected to be more related to the instantaneous sorption
properties. That is, the short-term bioavailability plays a more effective role in
determining the overall speed of degradation.

For kinetics systems of larger (λ2 /λ1) ratios, the long-term bioavailability
factor becomes more important in determining degradation time. As illustrated
in Figure 16, when the two macro rate constants differ further apart (i.e., λ2/λ1
≥50), almost a perfect inverse relationship of DT50 and DT90 with the long-term
bioavailability BfS is established for the most part (except in the area of μw near
0). Comparatively, the short-term bioavailability factor is less influential under
these conditions (not shown). Larger differences between λ1 and λ2 suggest more
prominent effects of sorption kinetics on degradation. Slow sorption becomes
the rate-controlling step for metabolism in the soil pore water. As a result, the
overall degradation can be approximated as a first order process with the effective
rate constant best determined by the long-term bioavailability factor (BfL). This
makes sense as the quantity BfL (Eq. 24) incorporates the combined effect of
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sorption (equilibrium and kinetic), biodegradability (μw), and the associated micro
environmental conditions.

Figure 15. Relationship of short-term bioavailability factor (BfS) and
biodegradability (μw) with degradation time (DT50, left; and DT90, right) when
λ2/λ1 ≤ 10. Open black circles are plotted with μw (i.e., bottom x-axis). Orange
circles are plotted with BfL correction (i.e., μw*BfL on top x-axis). Results were
from 5000 Monte Carlo simulations as described in Figure 12. (see color insert)

Figure 16. Inverse relationship of degradation time (DT50, left; and DT90, right)
with biodegradability (μw) and long-term bioavailability (BfL) when λ2/λ1 ≥ 50.
Open black circles are plotted with μw (bottom x-axis). Orange circles are plotted
with BfL correction (i.e., μw*BfL on top x-axis). Results were from 5000 Monte

Carlo simulations as in Figure 10. (see color insert)

The effectiveness of the two bioavailability factors is demonstrated in the
experimental results of eight pesticides and 35 data points obtained from the seven
literature studies as summarized in Table 1 (Figure 17). Only DT50 data are
used here since most DT90 values were not provided in these published studies.
Results in Figure 17 show that μw alone could not provide a good correlation
with DT50. However, applying the bioavailability factors effectively reduces the
scatter (orange circles), resulting in a reasonable inverse relationship with the
measured DT50 data. The short-term bioavailability factor appears to outperform
its long-term counterpart to form a tighter relationship. The median λ2/λ1 ratio for
the 35 experiments is 8.9 with the majority smaller than 15. This is consistent with
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the Monte Carlo simulation results in that relatively small λ2/λ1 ratios support the
short-term bioavailability as a better factor to estimate the effective first-order rate
constant.

Figure 17. Inverse relationship of measured DT50 with the short-term (BfS)
(orange circles on left) and long-term bioavailability factors (BfL) (orange circles
on right) and biodegradability (μw) (black circles) from published literature data

(Table 1). (see color insert)

Correlation of Degradation with Soil and Environmental Factors

The analysis of the two bioavailability factors may shed light on the search
for predictive regressions between degradation and soil and environmental
factors. On a macroscopic level, degradation time under a set of specific
environmental conditions is expected to be an inverse function of a compound’s
biodegradability corrected by the in situ bioavailability. Since biodegradability
is compound-specific and dependent on temperature, moisture and microbial
conditions, it may be logical to use a surrogate variable (or variables) to represent
the breakdown conditions in a regression analysis.

To illustrate, we take the data from the seven published studies described
previously and assume that the biodegradability (μw) of a compound in a specific
experiment is a function of temperature, soil moisture and organic matter.
Although soil organic matter (SOM) may correlate with both microbial activity
and substance sorption, the latter is already accounted for by the definition of
the two bioavailability factors. Specifically, a multiplicative power function is
hypothesized for biodegradability:

where T is temperature, °C; OC is soil organic carbon, %; and a1, a2, and a3 are
regression constants, and other variables are defined previously.

Using the inverse relationship of DT50 with μw and BfS, we then have
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where a4 is an additional regression constant.
Applying Eq. 26 to a regression with the experimental data suggests that only

BfS and T are two significant variables and the other two soil factors OC and θ
have minimal contribution (Figure 18). Presumably, the effects of OC and θ may
be implicitly accounted for by the regression considering BfS being a function of
Kd and θ by definition (Eq. 22). Results of the regression-predicted and measured
DT50 are plotted in Figure 18.

Figure 18. Measured and regression model-predicted DT50 for eight pesticides
in six published studies (Table 1). Regression of Eq 26 was used to fit the data.

Best fit parameters were: a1=0.91, a2=0, a3=0, and a4=11.1.

Although much scatter exists (which may reflect the unaccounted
chemical-specificity in μw), the above example demonstrates the potential
usefulness of the proposed bioavailability factors to associate degradation
time with other environmental factors. More experimental data are needed to
further evaluate and validate the proposed concept. The vast majority of current
environmental fate studies in the published literature have largely focused on
sorption and degradation as two separate topics. Relatively few studies have
provided measured data of the required sorption and degradation parameters
to calculate the proposed bioavailability factors. In a recent study, Ghafoor et
al. (33) was able to develop regressions to predict degradation rate constants
based on the equilibrium sorption coefficient (via a bioavailability factor similar
to Eq. 21), organic carbon content and other soil properties for a broad range
of tested soils and pesticides. In contrast to the simple regression given here,
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their regressions were developed on a compound/study-specific basis so that the
inherent biodegradability factor did not need to be accounted for separately.

Assuming biodegradability is directly proportional to microbial population,
Struijs and Van Den Berg (30) showed that specific biotransformation rates
in different environmental media could be estimated from a compound’s
biodegradability adjusted by a bioavailability factor of the underlying medium.
The authors emphasized that standardized biodegradability measurements are
necessary for inter-media extrapolation in the assessment of environmental
biodegradation rates. The adjustment approach of biodegradability by
bioavailability for chemicals other than pesticides was also demonstrated in a
soil/water slurry batch study by Zhang et al. (32). In this study, naphthalene
biodegradation was predicted well only after a bioavailability factor determined
by time-dependent sorption was applied to adjust the first-order rate constant
measured in water without presence of the soil/sediment.

It is noteworthy that the concept of biodegradability which is defined as the
soil pore water metabolic transformation rate constant may benefit the effort to
delineate the confounding effects of soil properties such as the soil organic matter
(SOM) on both sorption and degradation. SOM is often the prime sorbent for
pesticides in soils, but is also often correlated with the biodegradation of organic
chemicals in soil (34). In a Canadian study by Gaultier et al. (35), 2,4-D sorption
was found to be positively and mineralization negatively correlated with SOM
in topsoil samples. The authors concluded that although the microbial activity
also increases with SOM, this influence on mineralization is overcompensated by
the decreased availability of 2,4-D for degradation, due to increased sorption to
SOM. Similar findings were obtained by Aletto et al. (36) in an S-metolachlor
study where a better correlation of the mineralization rate was achieved by the
quotient of microbial biomass (also correlated with SOM) over the soil sorption
coefficient (Kd), in comparison with its individual correlations with Kd and
microbial biomass. The better correlation by the biomass/Kd quotient is consistent
with the relationships expected from the concepts of biodegradability (which
would be a direct function of biomass) and bioavailability (which is an inverse
function of Kd , i.e. Eq. 21).

Likewise, bioavailability distinguishes from biodegradability in relationships
with soil properties and it is more a function of sorption (equilibrium and
time-dependent). Assuming complete linear equilibrium sorption, Ghafoor et
al. (33) was able to delineate and quantify the competing effect of SOM on
biodegradability (microbial biomass) and bioavailability (sorption) and showed
that the correlation of pesticide degradation with SOM differs for high- and
low-sorbing substances. The analysis suggested that degradation of higher Koc
pesticides is likely to have a negative correlation with SOM due to bioavailability
constraints, while low-sorbing compounds tend to show a positive correlation
with SOM, presumably due to a positive influence of SOM on microbial biomass
(or biodegradability). This hypothesis led to a set of successful regressions
between degradation rate constants and SOM as well as other soil properties for
more than 19 pesticide-study combinations.

Similar results were obtained by Villaverde et al. (37), who observed that
for acidic herbicides (dicamba, 2-4-D, and flupyrsulfuron-methyl), there was a
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positive correlation of SOM with both Kd and degradation rate (exception: no
correlation with either parameter for mesulfuron-methyl). The authors proposed,
similarly as later Aletto et al. (36), to consider for the prediction of the microbial
degradation of pesticides in soil, besides the SOM content, an availability factor,
exhibiting Kd in the denominator of a quotient. In contradiction to this, however,
a study from Bolan and Baskaran (38) indicated that while 2,4-D sorption
continuously increased with increasing SOM, the degradation of 2,4-D decreased
from low-OC soils to a minimum at ca. 10% OC, and then increased again with
further increasing OC content of soils. This ambivalence of findings indicates
that the effects of SOM on pesticide degradation may involve other factors
unaccounted for in their contributions to the estimates of bioavailability and
biodegradability.

Summary and Conclusions

The coupled kinetics of sorption and degradation is a robust and flexible
model with mechanistic specificity to interpreting various first and non-first order
data. It is equivalent to the DFOP model but with macro parameters elaborating
the equilibrium and micro kinetic rate constants of both sorption and degradation.
Specifically, the rate constants of sorption (α) and metabolism in soil water (mw)
can be derived from the DFOP parameters measured on bulk soils (λ1, λ2). The
macro parameters thus can be used as a tool to estimate biodegradability and
sorption rate constants through combined standard laboratory soil metabolism
and batch sorption studies. This highlights the importance of collaborative
experimental designs between different environmental fate studies. For example,
in addition to sorption and soil metabolism studies, new research may be
conducted to evaluate assays to measure biodegradability relevant to the soil pore
water environment.

Biodegradability is defined as the microbial transformation rate constant in
the soil pore water. This is a parameter after removing the effect of sorption. By
this definition, biodegradability is chemical-specific (i.e., related to compound’s
molecular structure) and should also be a function of the in situ degrading
microbial biomass and activity as well as other environmental variables (such
as temperature). In order to compare the inherent degradability of different
chemicals, standardized tests of biodegradability in soil should be established
so that the effects of the indigenous microbes and other environmental factors
can be normalized. Such data should benefit the development of quantitative
structure–activity relationship (QSAR models) models (39).

Two new bioavailability factors are proposed, one for short-term when
pesticide is freshly applied, the other applies to long-term or when pesticide is
sufficiently aged after application. The newly proposed bioavailability factors are
shown to be useful in delineating potential relationships between degradation and
soil properties. System non-first order behavior can be measured by the α/μw ratio
given other physical-chemical parameters being constant (i.e., Kd, f, and ρ/θ), or
by the ratio of the two macro parameters (λ2/λ1) for a broader range of conditions.
Analysis of a large number (5000) of Monte Carlo simulations suggests that when
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the λ2/λ1 ratio in DFOP is ≤10 (or ≥50), system degradation can be approximated
as a first order process and the rate constant equals the product of bioavailability
and biodegradation. In terms of degradation time such as DT50, an inverse
relationship with bioavailability and biodegradation exists.

Predicting degradation of pesticides by soil and environmental factors remains
far from satisfactory. The complicated interactions among soil properties and
their interrelated effects on degradation and sorption may easily confound the
analysis of limited data. In order to develop more reliable and accurate predictive
models, there is a need to collect robust experimental data from systematically
coordinated measurements of both sorption and degradation for a broad range of
chemistry in a variety of representative soils and conditions. The present work
provides a modeling framework for future development of potential multivariate
regressions for predicting pesticide biodegradation and sorption kinetics with soil
properties (e.g. SOM, pH, and mineral constituents such as volcanic ash versus
oxidic/ferralitic soils) and climate conditions. Such effort will undoubtedly benefit
the elucidation of the underlying mechanisms in observed data, sound assessment
based on the totality of studies, and ultimately better product designs to meet the
increasing demand for agricultural sustainability and environmental protection.
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Chapter 3

Terrestrial Field Degradation Based on Soil,
Climatic, and Geographic Factors

Robin Sur*

Bayer CropScience LP, 2 TW Alexander Drive,
Research Triangle Park, North Carolina 27709, United States

*E-mail: robin.sur@bayer.com.

Field degradation data of pesticides and their metabolites
from North America, Europe, and the Tropics have been
reviewed, assessed, and compared. The study focused on field
residue trial data with degradation as the only or predominant
dissipation process and included kinetic evaluations with
and without normalization to reference conditions for soil
temperature and moisture to study the effect of climate and soil
separately. The Köppen-Trewartha classification has been used
to group North American and European trial data into similar
climate groups before comparison. Generally, non-normalized
field degradation followed a temperature gradient and was
slower in temperate regions compared to the subtropics and
tropics. Within North America degradation in Canada was
slower compared to the U.S. and within the U.S. pesticide
degradation on temperate sites was slower than on subtropical
ones. Between Northern and Southern Europe and between
Europe and North America non-normalized and normalized
degradation was generally not different. Upon normalization
the latitudinal trend across North America disappeared and soil
properties became evident as drivers for degradation. Only
normalized field degradation on cold and dry sites low in
organic matter in the Pacific Northwest as well as on intensely
weathered sites with acidic soils in the Southeast was slower
compared to other regions in the U.S..
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Introduction
Soil degradation studies with pesticides and their metabolites under

laboratory conditions in the dark usually provide data on degradation as the
only relevant dissipation process (1). Here, microbial degradation is often the
major pathway driving overall degradation of most organic chemicals in soil,
although abiotic reactions including hydrolysis and oxidation-reduction can also
take place. Under field conditions the suite of degradation reactions might be
supplemented by photochemical reactions, while additional environmental fate
processes may significantly contribute to the overall dissipation of a compound,
i.e. leaching, plant uptake, volatilization, and run-off/erosion (2). The vast
majority of terrestrial field dissipation (TFD) studies with pesticides and their
metabolites have been conducted across North America and Europe to fulfill
regulatory requirements for product registrations. Depending on the rationale
for carrying out a TFD study the design and the endpoints obtained may differ.
In principle, TFD studies are designed to answer two questions. The first one
deals with the overall environmental fate of a compound under realistic outdoor
conditions including all possible routes to identify the main drivers and reaction
products of dissipation. In this case lumped dissipation endpoints would be
obtained from a TFD study (3, 4). If a TFD study is intended to provide endpoints
to be used in numerical leaching models, however, all dissipation processes other
than microbial degradation (and abiotic processes related to soil which cannot be
separated from biodegradation, i.e. hydrolysis and redox reactions) need to be
excluded by the experimental design or post-processing of the test results (5, 6).

The main focus of the present article is on microbial degradation in the
field only and its quantitative evaluation and comparison between geographical
regions. TFD studies on the overall fate of a compound under realistic outdoor
conditions served as suitable data basis, when these data showed (e.g., at least one
residues free soil layer that was sampled per time interval; no sloped trial site)
and it could be concluded from the general environmental fate characteristics
(low volatilization potential due to low vapor pressure and Henry constant,
photolytically stable, low mobility based on adsorption coefficient) that other
dissipation processes than microbial degradation were negligible or when these
processes had been excluded after field data post-processing, e.g. according to the
procedures described in (6). In the absence of appropriate field degradation data
for tropical regions also field dissipation data with major dissipation pathways
other than microbial degradation and laboratory degradation data have been
discussed. In addition, laboratory soil degradation data also provided important
weight of evidence to support findings from the field.

Effect of Soil Temperature and Moisture on Degradation
Soil moisture content and temperature fluctuations in a typical environmental

range are generally acknowledged to effect reaction rates. The effect of both
environmental parameters on soil degradation can be quantitatively described
by the Walker and the Arrhenius equations, respectively (7–9). In general, wet
and warm weather conditions favor quick biodegradation, whereas cold and
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dry conditions result in slower reactivity. Multi-year terrestrial field dissipation
(TFD) studies of slowly degrading compounds usually show typical multi-phase
degradation curves with a relatively quick degradation in summer followed by
a slowdown in autumn and even a winter pause in reactivity, followed by a
continuation of degradation in the following spring (10). Similarly, cold and/or
dry geographical regions lead to overall longer degradation half-lives compared
to warm and/or wet regions (11). The season of the application might also have
an impact with spring applications in the northern hemisphere normally leading
to quicker degradation compared to applications in the autumn (10).

The normalization of field degradation half-lives to reference conditions for
soil moisture and temperature is an established methodology to compensate for the
effects of weather conditions on degradation (12). Commonly and in this article,
soil moisture at field capacity (pF 2.0) and a soil temperature of 20°C are used as
reference conditions. This approach is usually applied to derive half-lives that can
be used in numerical leaching models. The conceptual model for the governing
factors of pesticide degradation in soil is depicted in Figure 1. In principle, the
soil degradation half-life is a function of weather, soil, and study conditions like
application rate, type of formulation, and mode of application. Normalization only
compensates for the short-term effect of weather on soil temperature and moisture.
The long-term effect of climate on soil formation cannot be compensated for by
normalization. Geography has a direct influence on soil formation based on the
available parent material and the topography; it also impacts the locally existing
weeds, diseases, or pests and in turn determines the selection of the study design
to best control the infestation.

Figure 1. Conceptual model for soil degradation. Normalization of half-lives to
reference conditions for soil temperature and moisture eliminates the short-term

effect of weather on soil degradation.

In principle, the temperature dependency of soil degradation rates can either
be described using the Arrhenius equation or the similar ‘Q10 rule’ stating that
a change in temperature of 10 K results in a Q10-fold change of the degradation
rate (Figure 2). It is assumed that soil temperatures at or below 0°C halt any
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kind of microbial degradation. The effect of soil moisture on degradation as
described by the Walker equation (7, 8) is illustrated in Figure 3; the degradation
rate increases with soil moisture up to field capacity, beyond which no further
increase is assumed. Both equations have been combined in the formula below to
calculate the normalized half-life from the actual half-life using correction factors
for soil moisture and temperature (12):

Ea: Arrhenius activation energy (65.4 kJ mol-1)
R: Gas constant (8.314 J K-1 mol-1)
FC: field capacity (pF 2 = 0.1 bar)
T: Temperature (K)
Tref: Reference temperature (293.15 K)
θ: gravimetric soil moisture
B: Walker exponent (0.7 based on reference (9, 13))
DT50: half-life

These fundamental relationships of environmental conditions on degradation
can be applied in a ‘time-step normalization’ approach to consider daily soil
moisture and temperature data for normalization rather than long-term averages
to increase the accuracy of this procedure. Here, reported-time to concentration
curves are replaced by transformed-time to concentration curves (12). This leads
to a compressed time axis for days with lower temperatures than 20°C, e.g. a
day at 10°C is converted to 0.4 time-step days (based on a Q10 of 2.58; reference
(9)) reflecting its degradation potential compared to a day with on average 20°C.
Long-term winter periods with temperatures below 0°C are compressed to a 0-day
long period. By this procedure normalized degradation curves are obtained that
would be observed if temperature and moisture were kept constant at reference
conditions throughout the study.

Through this approach compound degradation rates from different climate
regions can be compared without being biased by short-term weather factors to
study solely the effects of soil properties and soil microbiology on degradation.
However, long-term climate can still have an indirect effect on degradation by
influencing the formation of ‘zonal soils’ defined as being unique to certain climate
regions (14).
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Figure 2. Temperature correction factor as a function of soil temperature based
on a Q10 of 2.58 (9). The reference temperature is set to 20°C. The degradation
rate at 30°C is 2.58-fold greater than at 20°C and at 10°C it is 2.58-fold smaller.

No degradation is assumed at or below 0°C.

Figure 3. Effect of gravimetric soil moisture on degradation based on the Walker
equation (7, 8) using an exponent B of 0.7 (9, 13). θFC is the gravimetric soil
moisture at field capacity (pF 2). Degradation at 37% field capacity is only half
as fast compared to 100% field capacity. The degradation rate does not increase

beyond field capacity.
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Kinetic Evaluations

The kinetic evaluation of degradation data after normalization usually follows
the guidance provided in (10) to derive modeling endpoints that can be used as
input in numerical leaching models. Either the half-life is directly derived from a
single first-order (SFO) fit to all data points or, if the fit is visually and statistically
not acceptable, a conservative half-life of a bi-phasic fit is chosen. In case the
DT90 has not been reached in the study this can be either the SFO half-life of
the slow compartment of the double-first order in parallel (DFOP) model or the
SFO half-life of the slow phase of the hockey-stick (HS) model. If the DT90
has been reached during the study a conservative SFO is back-calculated from
the DT90 of the first-order multiple compartment (FOMC) model (DT50SFO =
DT90FOMC/3.32). The objective is to derive in any case an SFO half-life, which is
compliant with degradation routines used in numerical leaching models and that
conservatively describes at least 90% of the degradation of the compound. In
this article only the DT50 for kinetic evaluations of normalized data is provided
because the corresponding DT90 is always 3.32-fold larger.

Kinetic endpoints for non-normalized field data were derived according
to the procedure also described in (10) for non-normalized degradation curves
(‘trigger evaluation’). Among three different kinetic models, i.e. the SFO, DFOP,
or the FOMC model, the DT50 and DT90 of the model that best described the
degradation were selected.

A comparison of half-lives between normalized and non-normalized data sets
is difficult to interpret, because the non-normalized half-life is always a true DT50,
i.e. the time between application and when 50% of the initially applied amount
has degraded. For normalized data, however, this is only the case if an SFO
fit was chosen to represent the degradation of the entire curve reasonably well.
In case the half-life of the slower compartment or phase of the DFOP or HS
model, respectively, have been chosen as kinetic endpoint this half-life is longer
than the true DT50 and comparisons should not be made. In this study the half-
lives reported for the normalized data sets are a mixture of DT50 values and half-
lives of the slower compartments/phases of DFOP and HS models and therefore
comparisons between normalized and non-normalized data were not undertaken.

Terrestrial Field Dissipation in North America

Sur (15) investigated the standard, non-normalized field degradation behavior
of 26 pesticides including metabolites across the contiguous United States and
Canada in 19 states and 4 provinces, respectively, totaling 44 TFD sites to
examine the effect of pedoclimatic conditions on degradation (Figure 4). In
order to compare sites a ‘site classification index’ was calculated by dividing the
half-life (and the DT90) of a given compound at a specific site by the geometric
mean half-life (and DT90) of this compound on all sites. An index of greater than
1 indicated a relatively slow degrading site whereas a value less than 1 showed a
relatively quick degrading site. This index approach to compare sites was deemed
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necessary, because the degradation of the compounds was not studied at all sites.
Hence, any potential bias caused by a not even distribution of slowly and quickly
degrading compounds across the sites could be eliminated by this methodology.

The analysis showed that the half-lives and the DT90s generally followed
the temperature gradient between Canada and the United States. Degradation
in the U.S. was significantly faster than in Canada (Table 1, t-test, significance
level 5%). In a second step, the Köppen-Trewartha classification (16, 17) was
used to further refine the analysis and to categorize all sites according to common
climate characteristics into five different regions covering the range from boreal
to subtropical climate (Figure 4), i.e. ‘subtropical dry-summer’ (California),
‘subtropical humid’ (e.g., North Carolina and Georgia), ‘temperate continental’
(e.g., New York State), ‘temperate-boreal steppe’ (e.g., Saskatchewan, North
Dakota, Nebraska), and ‘temperate-boreal cold desert’ (Washington State).
Again it became evident that the temperate zones resulted in slower degradation
compared to the warmer subtropical regions in the Southeast and the Southwest
(Table 1, t-test, significance level 5%). Sites within the temperate and subtropical
regions did not differ in degradation rates (Table 1, t-test, significance level 5%).

Figure 4. Experimental field trial sites (red dots) and Köppen-Trewartha climate
regions in the U.S. and in Canada. The sites in Texas (SBSh) and in southern
California (SBWh) were omitted as they do not fit into the selected classes.

Ecozones based on (16). (see color insert)
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Table 1. Mean Site Classification Indices for Five Köppen-Trewartha
Climate Regions within the U.S. and Canada and Separately for U.S. and
Canada Based on Non-Normalized Degradation Kinetics of 26 Compounds

Index Geometric Mean

Climate Class DT50 (90% CI) DT90 (90% CI) n
(trials)

SCf Subtropical
humid 0.58 (0.41-0.82) 1 0.70 (0.53-0.92) 1 20

SCs Subtropical dry 0.73 (0.52-1.03) 2 0.70 (0.53-0.92) 1 18

TeDc Temperate
continental 1.08 (0.89-1.32) 1.19 (0.98-1.45) 27

TeBWk Temperate cold
desert 1.31 (0.94-1.83) 1.08 (0.89-1.32) 15

TeBSk Temperate
boreal steppe 1.32 (1.09-1.59) 1.24 (1.05-1.46) 39

U.S. total 0.89 (0.78-1.02) 3 0.90 (0.80-1.00) 3 95

Canada total 1.51 (1.19-1.92) 1.48 (1.24-1.75) 26

DT50 and DT90 clearly follow a temperature gradient, i.e. degradation at sites in Canada
is significantly slower than in the U.S.. The same holds true for degradation at sites in
temperate climate zones, which is slower compared to subtropical zones (CI: confidence
interval, n: number). Sites within the subtropical and temperate climate class do not show
differences; 1 DT50/DT90 on a subtropical site (SCf, SCs) is faster than on any of the
temperate sites (TeDc, TeBWk, TeBSk); 2 DT50 is faster than on two of the temperate
sites (TeBWk, TeBSk) but equal to temperate site TeDc; 3 DT50/DT90 in Canada are
slower compared to the U.S. sites, all comparisons based on t-test, 5% significance level.

Whereas non-normalized TFD data from North America clearly showed a
quicker degradation from north to south in accordance with increasing average
temperature, this trend disappeared upon normalization to a reference temperature
of 20°C and soil moisture at field capacity. Sur and Schäfer (18) investigated
the normalized field degradation of 21 compounds across North America. The
evaluation included 30 TFD study locations extending over 16 states and four
provinces in the contiguous United States and in Canada, respectively. Generally,
the degradation rates among the majority of the sites did not differ. No statistically
significant differences in degradation between Canada and the U.S. were observed
(Table 2, t-test, 5% significance level) in contrast to the non-normalized data
that without such normalization would have suggested different soil reactivity.
Also degradation in the temperate climate region in its entirety was not anymore
slower than in the subtropical region as it appeared based on the non-normalized
dataset. However, it was found that degradation at the sites in Washington State
in the Pacific Northwest (‘temperate-boreal cold desert’) and in the Southeast
(‘subtropical humid’) was significantly slower when compared to the two quickest
degrading regions, i.e. ‘subtropical dry-summer’ (California) and ‘temperate
continental’. The general conditions for microbial degradation at the site in
Washington were unfavorable due to the cold and exceptionally dry climatic
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conditions; in addition, the soil was coarse-textured and exhibited only 0.3%
organic carbon in the top 30 cm. The slowly degrading ‘subtropical-humid’
regions of the Southeast were associated with intensely weathered, acidic soils
exhibiting pH values usually below 6. It seems possible that these soils would
have different microbial populations than soils of more neutral pH. Low pH
values as observed in the southeastern region of the United States have been found
to negatively impact soil microbial communities (19). Conceptually, it appears
that the short-term effect of weather on degradation had been compensated for by
normalization, but environmental differences that impact soil morphology and
microbiology are not resolved by the current methodology. However, further
work is needed to confirm these findings, because in some cases there were only
a limited number of trial sites available to represent a climatic region.

Table 2. Mean Site Classification Indices for Five Köppen-Trewartha
Climate Regions within the U.S. and Canada and Separately for U.S. and
Canada Based on Normalized Degradation Kinetics of 21 Compounds

Climate Class Index Geometric Mean
DT50 (90% CI) n (trials)

SCs Subtropical dry 0.83 (0.68-1.02) 1 12

TeDc Temperate continental 0.88 (0.72-1.07) 1 12

TeBSk Temperate boreal steppe 1.00 (0.83-1.21) 18

SCf Subtropical humid 1.21 (1.03-1.43) 14

TeBWk Temperate cold desert 1.27 (0.96-1.68) 11

Canada total 0.84 (0.54-1.29) 6

U.S. total 1.03 (0.95-1.13) 63

Degradation rates do not follow a clear climate pattern upon normalization. 1Degradation
at sites in subtropical dry and temperate continental regions is significantly faster than on
subtropical humid and temperate cold desert sites but not different compared to temperate
boreal steppe (t-test, 5% significance level). Differences indicate different soil reactivity of
the sites/regions. CI: confidence interval, n: number of trials.

Terrestrial Field Dissipation in Europe
The North American continent covers a more diverse range of climate types

with more extreme temperature differences and drier conditions compared to
Europe. European and North American trial sites have only the SCs climate class
(subtropical dry-summer) in common. The only other climate class in Europe
is the TeDo class (oceanic climate with coldest month over 0°C). The North
American sites however even cover arid (cold desert, TeBWk) and semi-arid
(boreal steppe, TeBSk) climate as well as colder continental climate (coldest
month below 0°C). In order to evaluate whether the more uniform climate in
Europe also becomes manifest in the behavior of pesticides in the field, Sur (20)
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investigated the non-normalized field degradation of 27 active ingredients and
metabolites throughout eight European countries. Whereas the U.S. and Canadian
trial sites extended across five different Köppen-Trewartha climate classes, the
European sites were described by only two classes (Figure 5). Only compounds
were considered that had degradation data from both climatic regions available
to facilitate a better comparison; therefore there was no need to calculate a site
classification index as for the North American sites, instead half-lives were
directly compared. The 174 trials were conducted in the temperate-marine (TeDo)
ecoregion of Northern and Central Europe (Northern and Central France, United
Kingdom, Sweden, Germany, The Netherlands, Northern Italy) and 36 in the
subtropical dry summer Ecoregion (SCs) of Southern Europe (Portugal, Southern
France, and Spain). Significant differences of DT50 and DT90 values and of
variances between both datasets were not observed (t-test, F-test, 5% significance
level, Table 3). After normalization of the same dataset to reference conditions
for soil temperature and moisture the results provided in Table 4 were obtained
showing again no significant differences of half-lives and variances between
Northern and Southern Europe (t-test, F-test, 5% significance level) suggesting
that soil reactivity across Europe does not differ significantly. Obviously lower
temperatures and higher soil moisture in Northern Europe have a similar net
effect on degradation as higher temperatures and less soil moisture in Southern
Europe, which is why also the non-normalized half-lives between both regions
do not differ.

Table 3. Endpoints of Non-Normalized Field Degradation Fits According to
(10) from Northern/Central (TeDo) and Southern Europe (SCs)

Trigger Endpoints (non-normalized)

DT50 (d) (90% CI) DT90 (d) (90% CI)

TeDo SCs TeDo SCs

Geometric Mean 41 (34-49) 35 (26-48) 227 (193-266) 217 (156-301)

Median 49 39 243 229

90th Percentile 240 102 1000 986

n (trials) 174 36 174 36

n (compounds) 27 27 27 27

Geometric mean DT50 and DT90 and respective variances from both regions are
statistically not different (t-test, F-test, 5% significance level). Classification according to
Köppen-Trewartha (16). (CI: confidence interval, n: number.)

It is justified, therefore, to combine results from all locations to derive a robust
field degradation rate constant for a given compound. Further, these results suggest
it may be possible to define a representative field rate constant across Europe using
fewer test locations.
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Table 4. Endpoints of normalized field degradation fits according to (10)
from Northern/Central (TeDo) and Southern Europe (SCs)

Modeling Endpoints (normalized)

DT50 (d) (90% CI)

TeDo SCs

Geometric Mean 41 (35-48) 50 (35-73)

Median 47 64

90th Percentile 165 158

n (trials) 174 36

n (compounds) 27 27

Geometric mean DT50 values and variances from both regions are statistically not different
(t-test, F-test, 5% significance level). Classification according to Köppen-Trewartha (16).
(CI: confidence interval, n: number.)

Figure 5. Experimental field trial sites (red dots) and Köppen-Trewartha climate
regions in Europe. All sites except for one fit into the TeDo (53 sites) and SCs
(12 sites) climate classes; the site in Northern Spain (TeM) was omitted from

the analysis. Ecozones based on (16).
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Comparison of Terrestrial Field Dissipation between North
America and Europe

Sur (15) extended the aforementioned studies to an intercontinental scale
and compared non-normalized field degradation data from the U.S. and Canada
on the one hand side to European results on the other. The dataset consisted of
19 compounds including seven insecticides, five fungicides, four herbicides, and
three metabolites, all of which had dissipation data from both continents available.
Geometric mean DT50 and DT90 values did not differ between the continents
and neither did the variance of the DT90 values (t-test, F-test, 5% significance
level). However, the variances of the half-lives showed a significant difference
(F-test, 5% significance level) with the confidence range being larger in North
America compared to Europe presumably reflecting the greater heterogeneity in
soil and climatic conditions (Table 5).

Table 5. Endpoints of Non-Normalized Field Degradation Fits According to
(10) from North America (U.S. and Canada) and Europe (EU)

Trigger Endpoints (non-normalized)

DT50 (d) (90% CI) DT90 (d) (90% CI)

U.S./CAN EU U.S./CAN EU

Geometric Mean 42 (29-59) 33 (25-42) 189 (134-267) 178 (138-230)

Median 57 44 385 256

90th Percentile 355 187 1000 1000

n (trials) 85 113 85 113

n (compounds) 19 19 19 19

Geometric mean DT50 and DT90 from both regions are statistically not different (t-test,
5% significance level). DT50 variances are statistically different, DT90 variances are not
(F-test, 5% significance level) (CI: confidence interval, n: number.)

Furthermore, Sur and Schaefer (18) investigated TFD half-lives between
North America and Europe after normalization. The comparison of half-lives
of 21 compounds comprising four fungicides, four herbicides, five insecticides
and eight soil metabolites with TFD data available from 96 trials across the
contiguous United States and Canada and 126 trials from Europe showed no
significant (Table 6, t-test, 5% significance level) overall difference between
both continents after normalization to reference conditions for soil moisture and
temperature. Geometric mean half-lives calculated over all compounds amounted
to 39 days in North America compared to 31 days in Europe. The 90% confidence
intervals ranged from 29 days to 53 days and 24 to 39 days, respectively. On
the level of the individual compounds three of the 21 agrochemicals revealed
4- to 5-fold longer half-lives in North America compared to Europe. These
differences were for fungicides with half-lives greater than 100 days in North
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America. The differences may be explained by 2- to 20-fold higher application
rates in the United States and in Canada according to regional labels. In addition,
degradation of one of the three fungicides was retarded by lag-phases, which
were only observed in U.S.-American field trials indicating temporary inhibition
of pesticide degrading microbes. Higher application rates have been found to
slow down or temporarily inhibit degradation processes in the field for some
compounds (21). The normalized half-lives of the remaining 18 compounds,
however, did not show any significant differences between the continents. Table 7
compiles a comparison of the kinetic endpoints for these 18 compounds between
North America and Europe, which are practically identical.

Table 6. Endpoints of Normalized Field Degradation Fits According to (10)
from North America (U.S. and Canada) and Europe (EU)

Modeling Endpoints (normalized)

DT50 (d) (90% CI)

U.S. and Canada EU

Geometric Mean 39 (29-53) 31 (24-39)

Median 64 42

90th Percentile 249 168

n (trial sites) 96 126

n (compounds) 21 21

Geometric means and variances from both regions are statistically not different (t-test, F-
test, 5% significance level), CI: confidence interval, n: number.

Terrestrial Field Dissipation in Tropical Regions

Outside North America and Europe, there have been relatively few studies
conducted under controlled conditions on soils from tropical regions. Available
laboratory studies under standardized conditions on the pathway and degradation
kinetics of pesticides however reveal no systematic difference between tropical
and temperate regions (22). The proportion of degradation on overall dissipation
determined in relatively scarce TFD studies from tropical regions is difficult
to assess, as many results have been obtained without following harmonized
experimental protocols allowing addressing the extent of the different routes of
dissipation. Often lumped dissipation half-lives have been reported including not
only degradation but also other dissipation processes (23, 24). The purpose here
was more to identify the principal dissipation pathways, i.e. leaching and run-off
under typical heavy rainfall events or volatilization potential at high temperatures
rather than deriving microbial degradation rates. Generally, microbial degradation
is expected to occur faster in tropical compared to temperate regions due to
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higher year round temperatures and wetter soil conditions. Also the conditions
for enhanced degradation due to faster enzymatic adaptation are more favorable
(25). Leaching and run-off as well as volatilization are often significant additional
dissipation processes due to higher rainfall intensities and elevated temperatures
throughout the seasons further reducing observed dissipation times in tropical
field trials (23). When comparing data from the tropics with temperate regions
care must be taken that in the former regions the application rates might be higher
due to higher pest and disease pressure and year round crop cultivation and also
the agronomic practices might differ from other regions affecting the overall
degradation additionally (21).

Table 7. Endpoints of Normalized Field Degradation Fits According to (10)
from North America (U.S. and Canada) and Europe (EU) without Three

Outlier Fungicides

Modeling Endpoints (normalized)

DT50 (d) (90% CI)

U.S. and Canada EU

Geometric Mean 27 (19-37) 28 (22-37)

Median 35 36

90th Percentile 180 171

n (trial sites) 78 104

n (compounds) 18 18

Three fungicides showing significantly different half-lives between North America and the
EU were removed from the original dataset compiled in Table 6. Geometric means and
variances from both regions are statistically not different (t-test, F-test, 5% significance
level), CI: confidence interval, n: number.

Sanchez-Bayo and Hyne (24) performed a literature review and compared
non-normalized dissipation half-lives of 24 herbicides and 22 insecticides between
tropical and non-tropical soils mainly based on field data. Volatility losses at
higher temperatures in the tropics were found to be a major pathway for 38%
of the compounds. Dissipation in the tropics was at least twice as fast for half
of the insecticides and 55% of the herbicides. At least five herbicides (21%) and
two insecticides (9%) showed also significantly faster dissipation from tropical
compared to temperate soils. For the other compounds statistical significance tests
were not performed due to the limited number of data points available. Longer
half-lives in the tropics were found for 3 herbicides and 3 insecticides, which
accounted for 13% of the 46 compounds investigated.

Although normalized field degradation rates from tropical regions excluding
other dissipation processes than microbial and soil related abiotic degradation
are not found in the scientific literature these are expected not to be different
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from temperate regions based on the above mentioned comparison of laboratory
degradation rates. However, the findings on acidic subtropical humid soils as
reported in Table 2 suggest that lower soil pH values, which are typical for
tropical regions, give rise to longer half-lives. A systematic approach to compare
temperate with tropical soils should therefore include the assessment of pH
related effects on degradation.

Discussion

Several other studies support the concept of similar pesticide degradation
behavior on field trial sites and laboratory soils across different continents. Hardy
et al. (12) did not find differences between North America and Europe when
studying the field dissipation of isoxaflutole and two of its soil metabolites. Walker
et al. (26) compared the laboratory degradation of simazine in 16 soils from
Europe, Canada, and Asia with field dissipation data on the same soils. Using the
laboratory derived half-lives and the site specific weather data for predicting the
residue decline on the TFD sites using the routines described byWalker and Barnes
(27), field residues were generally over predicted, however for six sites a close
agreement between observed and predicted residues was achieved. No obvious
trend of laboratory and field half-lives with geographic regionwas found. But there
were significantly positive correlations of half-lives with the soil properties organic
carbon and clay content as well as pH. The relative unimportance of geography on
degradation is supported by work from Fierer and Jackson (19). They investigated
the biogeography of soil bacterial communities across North and South America
in 98 soil samples. Similarity between soil bacterial communities did not depend
on geographical latitude. More important predictors were soil properties, the most
important of which was soil pH for microbial diversity and richness. Generally,
diversity and richness decreased with pH.

The variability in soil degradation rates on smaller regional and field scales
is already large and underpins the significance of soil properties on pesticide
degradation compared to geography. The median standard deviation of the
laboratory degradation half-lives of five different pesticides (propyzamide,
linuron, simazine, metamitron, metazachlor) in 18 soils from the UK was as
high as 40% (6). Soil properties and microbial composition driving pesticide
degradation vary already considerably on a much smaller spatial scale and even
within a single agricultural field similarly high variability has been observed.
Walker et al. (28) found that the degradation of isoproturon within small subsets
of an agricultural field treated at the same nominal rate ranged considerably from
6.5 to 30 days. Faster subsets were found to have generally higher pH, larger
microbial biomass and greater microbial diversity. Price et al. (29) and Price (30)
also found a high spatial variability of degradation rates on agricultural fields for
isoproturon, chlorpyrifos, and chlorothalonil with degradation strongly correlated
with pH and microbial activity. Proper sampling strategies as recommended by
regulatory guidance documents on conducting TFD studies are aimed at balancing
this variability (3–6).
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Kah et al. (31) did not find any general correlation of degradation half-lives
with any major soil property (e.g., pH, clay, organic carbon, cation exchange
capacity, and biological activity) for six acidic and four basic pesticides on
nine soils from temperate regions. The main reason was that the dominant soil
parameters driving degradation varied among different pesticides. Whereas for
some pesticides clear correlations with some soil parameters existed, this could
not be generalized nor extrapolated to other classes of agrochemicals. Biological
activity and organic carbon content e.g. were the best predictors for variability
among the degradation rates for only two of the ten compounds investigated.
However, Ghafoor et al. (32, 33) successfully developed a general multiplicative
model to explain variability among soil degradation rates of pesticides using
the predictors soil sorption constant as surrogate for bioavailability, as well as
organic carbon and clay contents as surrogates for microbial biomass and activity.
In addition, soil depth was used to increase model performance. The model was
applied to 19 pesticide-study combinations on contrasting soils taken from the
scientific literature and including the data from Kah et. al. (31). The model was
able to explain 73% of the variability in degradation rates between soils and after
removal of four outlier datasets even 80% could be explained.

Conclusions

The following conclusions with regard to field degradation of pesticides
and their metabolites can be drawn based on the present review of the scientific
literature:

1. Weather and climate are important drivers of field degradation rates of
pesticides and their metabolites as expressed by ranges in soil temperature
and moisture. Degradation speeds up under warm and wet conditions
and slows down under cold and dry conditions. Field degradation is
expected to be quicker in the tropics compared to temperate regions. Field
degradation in Canada is generally slower compared to the United States.
Within the United States sites in subtropical regions degrade quicker
than in temperate regions. Within Europe no significant differences are
observed between Northern and Southern Europe. At a cross-continental
scale field dissipation between North America and Europe is generally
not different.

2. Normalization of field degradation rates to reference conditions for soil
temperature and moisture eliminates the short-term effect of weather and
unveils the effect of abiotic and biotic soil properties on degradation.
Following normalization in general no significant differences in
degradation were observed neither within Europe and North America
nor cross-continentally between both continents suggesting that soil
properties and microbial composition responsible for degradation are
quite similar within and across these continents. Normalization of field
degradation rates makes it possible and allows rate constants to be
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compared from field studies conducted globally, but also allows a rate
constant defined at limited geography to be extended to other regions in
many cases.

3. Within North America slower normalized degradation rates were only
observed under extreme climate and soil conditions (low pH and low
organic carbon content in soil). However, further data is needed for final
confirmation of the findings. General extrapolation of these data to other
continents should be avoided; however, they may be useful to extrapolate
to other regions with similarly extreme conditions.

4. The design of TFD studies may also have an impact on degradation
(use rate, formulation, application method - surface application or
incorporation). Higher application rates e.g. may slow down pesticide
degradation. This must be considered when comparing half-lives from
different regions where product label rates may differ due to different
weeds, diseases and pests.

5. Generally the factors contributing to similarities and differences of
degradation across regions and sites within a region are still not fully
understood and need to be studied further.
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The biodegradability of organic compounds in terrestrial and
aquatic systems is one of the most important factors related
to their environmental fate, their adverse effects to humans
and the environment and, consequently, their chemical risk
assessment. Today there is an array of models for classifying
the biodegradability of organic chemicals. Those models range
from the simple group contribution models, models based on
chemometric methods up to the expert systems based on various
artificial intelligence techniques. The objectives of this report
are (i) to review and evaluate the published biodegradability
classification models and (ii) to recommend the reliable
procedures for estimating biodegradability of organic chemicals
in the environment. The evaluation procedure has shown that
the majority of biodegradability models evaluated in this review
have classification rates in the 85-90% range and thus all have
a solid classification power. The recommended procedure
is to use all evaluated and available models for classifying
biodegradability of organic chemicals, i.e. the appropriate
BIOWIN model, the set of structural rules, the MultiCASE
system, the appropriate CATABOL model and the multivariate
PLS model. If there is a consensus between applied models,
classification of biodegradation may be considered as very
reliable. However, if there is agreement between only four or
three of those models, such classification should be considered
as reliable or only reasonable, respectively.
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Introduction

The persistence of pesticides in terrestrial and aquatic environments (1–4) is
one of the most important factors in evaluating their fate as well as their possible
adverse effects (5). Biodegradation (mineralization) is the most important
process for the removal of pesticides from terrestrial and aquatic environments,
once applied to crops. It was assumed that pesticides in terrestrial and aquatic
environments are completely bioavailable to microorganisms. While this is
generally true for aquatic environments, the studies in the last two decades
have revealed that the chemical residues in terrestrial environments are only
partially bioavailable to microorganisms and that the biodegradation process is
in competition with processes related to transport and mobility and, primarily,
with the sorption of pesticides to soils (6). Thus, the ability to measure or reliably
estimate the potential microbial biodegradability of pesticides under realistic
environmental conditions is of critical importance for the accurate environmental
and human risk assessment.

Today, there is no unique or standardized test or parameter that can be
used as a universal quantitative or qualitative measure for evaluating the
biodegradability potential of chemicals under realistic environmental conditions.
Consequently, the general or class-specific qualitative and quantitative models
for estimating the biodegradability potential of chemicals have been developed
for different environmental endpoints (7–10). The biodegradation studies with
mixed microbiological culture that mimic realistic environmental conditions can
be loosely classified as screening tests, grab sample tests, biological treatment
simulations or field studies. The screening tests normally employ an inoculum
and defined mineral salts medium, and the extent of degradation is determined
either directly by measuring the disappearance of the parent chemical or indirectly
as the biochemical oxygen demand (BOD), CO2 evolution, chemical oxygen
demand (COD) or dissolved organic carbon disappearance. The reproducibility
of individual tests is often poor, especially between laboratories, and in some
cases even within the same laboratory. This is especially true for the screening
tests (11). The variability may be also large for the grab sample tests and field
studies as was demonstrated by two extensive reports (12, 13).

Results are often highly dependent upon the test protocol. Thus, during the
last two decades the Organization for Economic Cooperation and Development
(OECD) has developed standard test guidelines for a series of biodegradability
tests (14) like the ready biodegradability test (OECD 301C) also known
as the MITI-I test, the inherent biodegradability – modified MITI test (II)
(OECD 302C), the aerobic mineralization in surface water – simulation
biodegradation test (OECD 309), the ready biodegradability – CO2 in sealed
vessels (headspace test) (OECD 310), the anaerobic biodegradability of organic
compounds in digested sludge – measurement of gas production (OECD 311)
and similar (http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-
the-testing-of-chemicals-section-3-degradation-and-accumulation_2074577x).
The test guidelines developed by the OECD and the US EPA’s Office
of Pollution Prevention and Toxics and Office of Pesticide Programs
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(http://www.epa.gov/opptsfrs/home/guidelin.htm) contain the detailed description
of specific analytical protocol as well as the criteria for evaluating tested chemicals
as biodegradable or non-biodegradable.

One of the most important screening tests for biodegradability is the MITI-I
test (OECD 301C). In this screening test the initial concentration of the test
substance is quite high (100 mg/L). The test measures BOD, normally lasts for
28 days and, if the oxygen consumption due to degradation of test chemical
reaches or exceeds 60% of the theoretical value, the test chemical is classified
as easily biodegradable. The largest available screening data set (nearly 1500
chemicals) is the collection of MITI-I test data (15). Another large database of
biodegradation information is the BIODEG database, developed by the US EPA
and the Syracuse Research Corporation (SRC) (10), includes over 6600 records
with biodegradation information on 815 chemicals. The BIOLOG database,
also developed by US EPA and SRC, is the index of published literature on the
biodegradation and microbial toxicity of chemical substances and contains over
62,600 records covering close to 8000 different chemicals (10). The International
Uniform Chemical Information Database (IUCLID), originally developed by
the European Chemical Bureau for existing chemicals in collaboration with
European Union Member States and Industry, is another source of information on
biodegradation. The current version of IUCLID database is 5.5.1 and it is available
from http://iuclid.eu/. There is also a useful website (http://umbbd.ethz.ch/) that
includes also the biocatalytic mechanisms, i.e. The University of Minnesota
Biocatalysis/Biodegradation Database.

Another source of critically reviewed data for BOD has been prepared by
the American Institute of Chemical Engineers, Design Institute for Physical
Properties (DIPPR)® and is commercially available at http://software.epcon.com/
aiche-dippr-database. The DIPPR database includes 34 chemical properties
for nearly 700 pure chemicals selected from U.S. Environmental Protection
Agency regulatory lists (16). Each BOD data point in the DIPPR database has
been critically evaluated using a 10-point criteria system which utilizes five
rating parameters (rating parameter, experimental protocol, temperature, seed
acclimation, chemical concentrations, internal consistency) (17). Data sources
received a score between 0 and 2 for each parameter which were then summed
for all parameters. For each chemical that had multiple data points from multiple
sources, only the highest rated data point was chosen for the database.

Besides the screening tests for biodegradability, there is also a significant
database of semi-quantitative biodegradability estimates based on experts’
surveys conducted by the US EPA (18, 19). This database can be useful for
developing the qualitative and quantitative models for estimating biodegradability
and for testing the models developed for screening tests data. In an early survey
performed in 1988 the semi-quantitative biodegradability estimates were collected
from 22 experts for 50 chemicals (18). The survey chemicals were selected
to be representative of chemicals from the pre-manufacture notices received
previously by the US EPA Office of Toxic Substances. Each expert rated the
primary and ultimate biodegradability of each chemical on a semi-quantitative
scale using hours, days, weeks, months, and longer as the approximate time that
will be required for a specific process to be completed. The arithmetic mean
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was calculated for each chemical after assigning the numerical values (longer =
1; months = 2; weeks = 3; days = 4; hours = 5) to the individual responses as a
measure of its biodegradability potential. One of the first general QSAR models
(7) was developed using those biodegradability data based on a survey of expert
knowledge. Later on in 1994, an extended survey was performed (19) in which
17 experts evaluated the potential biodegradability of 200 organic chemicals,
with 50 chemicals originating from the first survey. The 200 survey chemicals
covered a very wide range of structures and molecular weights, the majority of
which were multifunctional.

There are far fewer biodegradability data that are both quantitative and
environmentally relevant like the measured half-lives or rate constants in aquatic
and terrestrial systems. Furthermore, such quantitative data usually exist for
a specific set of conditions, a single class of chemicals, e.g. polychlorinated
biphenyls, and a limited number of data points. Thus, the measured half-lives or
rate constants are not suitable for developing general quantitative or qualitative
biodegradability models with a wide applicability domain. A similar situation
exists for pesticide field dissipation studies and bioremediation research.

In this chapter an extensive evaluation of general models for estimating the
complete biodegradation (mineralization) of organic chemicals will be given.
First, the structure and main characteristics of such biodegradability models will
be described. The focus will be on more recent modeling efforts in this research
area since several review articles have already been published on this subject
(8–10, 20, 21) as well as on the “standard” models like the BIOWIN™ package,
the MultiCASE system, and similar approaches. The most significant part of
this chapter will be on the results and discussion of the evaluation of general
models for estimating biodegradability. Models will be evaluated in terms of
their accuracy and range of applicability. A particular emphasis will be given to
the results of external validation. All potential limitations of individual models
will be clearly described. Finally, the specific recommendations will be given on
the reliable procedure for estimating biodegradability of organic chemicals in the
environment.

BIOWIN Models from EPI Suite Package

The Biodegradation Probability Program (BIOWIN™), developed by the
SRC on behalf of the US EPA (19, 22, 23), is the most widely used software for
evaluating the biodegradability potential of organic chemicals. It can be freely
downloaded and used but only as part of the Estimation Programs Interface
suite (EPI Suite, version 4.11) at http://www.epa.gov/opptintr/exposure/pubs/
episuite.htm). Like all models in EPI Suite, BIOWIN is intended for the
screening-level application. The current version 4.10 of the BIOWIN software
has been developed and improved at several stages (19, 22, 23). The first two
modules (Biowin1 and Biowin2) have been developed and improved already in
early 90’s (19, 24, 25) and are still in regular use to estimate the probability for
the rapid aerobic biodegradation of an organic chemical in the presence of mixed
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populations of environmental microorganisms. The enhanced version of Biowin1
(linear model) and Biowin2 (nonlinear model) modules (19) were developed
using a database of weight-of-evidence (qualitative) biodegradability evaluations
for 295 chemicals in the BIODEG database (http://syrres.com/esc/efdb.htm)
and consequently those modules classify organic chemicals as being easily or
poorly biodegradable. Biodegradability estimates are based upon 36 chemical
fragments plus a molecular weight fragment which are developed using the
multiple linear and nonlinear regression analyses and the dataset consisting of 186
easily biodegradable chemicals and 109 poorly biodegradable chemicals. Both,
the linear and nonlinear models classified the easily biodegradable chemicals
quite accurately, i.e. 97.3% of correct classification. However, the results are
significantly poorer in classifying the slowly biodegradable chemicals, 76.1% for
Biowin1 module and 86.2% for Biowin2 module. Thus, both modules seem to be
suitable for evaluating only the easily biodegradable chemicals. However, their
classification of poorly biodegradable chemicals should be taken with caution
particularly since those classification results are for the training set.

The other two models using Biowin3 and Biowin4 modules allow for the
semi-quantitative prediction of primary and ultimate biodegradation rates using the
multiple linear regressions (19). The training set for those two models consisted of
estimates of primary and ultimate biodegradation rates for 200 chemicals, gathered
in a survey of 17 biodegradation experts (18, 19). Each expert rated the primary
and ultimate biodegradability of each chemical on a semi-quantitative scale, i.e.
hours, days, weeks, months, and longer than months. The arithmetic mean was
calculated for each chemical after assigning numerical values to the individual
scores as follows: 5 = hours; 4 = days; 3 = weeks; 2 = months; 1 = longer and
used as the primary or ultimate biodegradation rate, i.e. the input for multiple
linear regression. The independent variables were the same as those used in the
Biowin1 andBiowin2modules; i.e. 36 structural fragments plusmolecular weight.
For the Biowin3 and Biowin4 models, the correlation coefficients (R2) between
experts’ estimates and calculated biodegradation rates for the survey chemicals
were very similar, slightly above 0.7. On a qualitative level Biowin3 and Biowin4
modules classified the easily biodegradable chemicals more accurately, i.e. 84.9%
and 93.5% of correct classification. Results were much poorer for classifying
poorly biodegradable chemicals, 79.0% for primary biodegradation and 71.7%
for ultimate biodegradation. Again, both modules seem to be more suitable for
evaluating the easily biodegradable chemicals.

Shortly after their development, the enhanced version of Biowin1 and
Biowin2 modules for estimating the aerobic biodegradability potential have been
externally evaluated on a large set of MITI-I data (8, 26). Unfortunately, both
modules performed poorly in estimating the biodegradability of organic chemicals
based on MITI-I test. Namely, the Biowin1 and Biowin2 modules were able to
correctly classify only about 60% of organic chemicals from the MITI-I data set.
Consequently, the Biowin1 and Biowin2 modules were re-parameterized by using
the MITI-I dataset, resulting in Biowin5 and Biowin6 modules, respectively (27).
The training set for Biowin5 and Biowin6 modules consisted of biodegradability
results from the MITI-I test (pass/no pass) for 884 organic chemicals. This data
set was divided into randomly selected training and validation set. The new
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coefficients were derived for the training set using the same fragment library and
molecular weight as independent variables. From these results, the fragment
library was modified by deleting some fragments and adding or refining others
and the new set of independent variables (42 chemical fragments and molecular
weight) was fit to the training set data. The resulting linear and nonlinear
regression models (Biowin5 and Biowin6) accurately classified 81% of chemical
in the validation set. Both models were more accurate in classifying the easily
biodegradable chemicals.

The most recent module in BIOWIN program (Biowin7) is quite different
from all previous models since this is a screening-level model for predicting the
anaerobic ultimate degradation in sludge (23). Biowin7 module was developed
from a data set of 169 chemicals tested for methanogenic anaerobic biodegradation
using the serum bottle method OECD 311 (28). The new module uses 37
fragments to classify a chemical as being degraded fast or slow under anaerobic
conditions. This module does not use the molecular weight as a variable. The
Biowin7 module correctly classified 90% of chemicals in the training set and 77%
or 91% in the two independent validation sets (n=35 or 23), respectively. The
accuracy of predictions of fast and slow degradation was equal for the training-set
chemicals. However, the fast-degradation predictions were less accurate than
slow-degradation predictions for the validation sets. The comparison of signs of
the fragment coefficients for all seven Biowin modules shows that the majority of
positive and negative contributions are the same for both aerobic and anaerobic
ultimate biodegradation. However, this generalization should not be used to
infer common degradation pathways for aerobic and anaerobic biodegradation
processes.

In 2004, a battery use of Biowin modules was recommended in order
to improve the qualitative prediction for fast biodegradability under aerobic
conditions (29). Bayesian analysis suggested that a battery consisting of Biowin3
and Biowin5 modules has the enhanced predictive power in comparison to
individual modules. For example, if the Biowin3 results are “weeks”, “days to
weeks” or “days” and if Biowin5 predictions is 0.5 or more, then the chemical is
evaluated to be easily biodegradable. In all other cases, the chemical is evaluated
to be poorly biodegradable. Application of the battery to 374 pre-manufacture
notice (PMN) substances showed that this approach significantly reduced both the
false positives for easily biodegradable chemicals and the overall misclassification
rate. Similar results were obtained for a set of 63 pharmaceuticals using a
battery consisting of Biowin3 and Biowin6 modules. The additional guidance
on the regulatory interpretation of the Biowin modules results is given in the EU
Technical Guidance Document (TGD) for the assessment of new and existing
chemicals (30) as well as in the more recent guidance for REACH implementation
(31). More specifically, the combined use of Biowin1 and Biowin2 modules are
recommended in those documents.

The comparison of coefficient signs of all seven Biowin modules gives
interesting results that are, in general, consistent with the common knowledge
about the relationships between chemical structure and biodegradability of
organic chemicals. All seven coefficients for the tertiary amine, aromatic
NH/NH2, and aromatic nitro fragments are negative while all seven coefficients
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are positive for ester, phosphate ester, aldehyde, aliphatic and aromatic acid,
aliphatic and aromatic alcohol, and unsubstituted phenyl groups. The molecular
weight term was uniformly negative in all six aerobic models while it was not
used as variable in Biowin7 module. For five additional fragments—aliphatic
ether, pyridine, aromatic chlorine, aliphatic chlorine, and quaternary carbon—six
out of seven coefficients were negative. Finally, for three fragments—aromatic
ether, aliphatic amine, and C4 terminal alkyl—the coefficients were positive in
six of seven models. Pyridine and linear C4 terminal alkyl are the only fragments
for which all aerobic modules are in disagreement with the anaerobic module.
Thus, it seems, contrary to the previous assumptions (32), that the majority
of structure-biodegradability relationships applicable to aerobic environments
are also applicable to anaerobic environments. Namely, the major positive
and negative contributions are the same for aerobic and anaerobic ultimate
degradation. A new rule for anaerobic conditions might be that the unsaturated
(olefinic) hydrocarbons degrade much faster than the saturated hydrocarbons.

The seven models (Biowin 1-7) were developed from four quite different
training sets. Consequently, their applicability domains defined by the range of
fragments and molecular weights (MW) in the training sets will be also very
different. In addition, for the semi-quantitative Biowin 3 and 4 modules, the
maximum and minimum values of ultimate or primary degradation rates also
define their applicability domain. However, there are several general features
of Biowin 1-7 modules related to their applicability domains. Namely, it is
generally accepted that the biodegradability estimates will be more accurate for
compounds that are within the corresponding applicability domain. Thus, the
biodegradability estimates will be less accurate for (i) chemicals that are outside
the MW range of the training set, (ii) chemicals having more instances of a
given fragment than the maximum for the training set compounds, (iii) chemicals
having a functional group(s) or other structural features not represented in the
model’s fragment library, and (iv) chemicals that have no fragments in the model’s
fragment library, i.e. the estimate is based only on their molecular weight. For
example, for Biowin3 module the largest percentage of misclassified chemicals
was obtained for chemicals for which prediction was based on the molecular
weight alone (33). All these points should be taken into account when evaluating
the quality of biodegradability estimates by the Biodegradation Probability
Program (BIOWIN™).

The fragment (group) contribution models like all Biowin modules lack the
ability to incorporate the effects of substituent positions, i.e. structural isomers,
on biodegradability of organic chemicals. A classic example is biodegradability
of naphthoic acid isomers in the MITI-I test. Biowin5 and 6 modules predict
that 1-naphthoic acid and 2-naphthoic acid pass the MITI-I test, i.e. that both
isomers are easily biodegradable. However, while 1-naphthoic acid has failed the
MITI test, the 2-naphthoic acid has passed the test as predicted by Biowin5 and 6
modules. There are a number of similar examples in the relevant literature since
it is well known that isomers or chemicals with minor differences in chemical
structure can be degraded at very different rates or even by different pathways
(32). The basic assumption of fragment contribution models like Biowin modules
is the linear additivity of fragment contributions irrespectively of their type
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or number. While this assumption works reasonably well for small molecules
contain only commonly found fragments in small numbers, the wrong prediction
becomes more likely even if fragments with positive contribution are present in
larger numbers. A typical example is cis-cyclopentane tetracarboxylic acid with
the multiple carboxylic acid groups that are favorable for easy biodegradability.
BIOWIN’s prediction is that this chemical should be easily degrades but in
reality it is not easily degraded (25). Finally, it is very likely that some fragments
significant for biodegradation are not included into the fragments library of
respective Biowin module. Examples are phosphonate, imidazole ring, ethoxylate
ether and cycloaliphatics. Adding more and/or better defined fragments into the
model’s fragment library can improve its predictive performance but this is not
always the case. The users of Biodegradation Probability Program (BIOWIN™)
should be aware of all potential models’ shortcomings which are clearly described
in its online manual.

Logical Structural Rules for Biodegradability Classification

Classification models based on the set of logical structural rules have
been also developed and improved in several stages (8, 17, 26, 34, 35) by the
application of appropriate artificial intelligence techniques. These techniques are
easily applied to the large sets of molecular descriptors, and do not require any
a priori assumptions regarding the model structure. Specifically, two decades
ago Gamberger et al. (34) applied the inductive machine-learning methods (36)
to derive the first strict rules, i.e. the structural requirements, for fast or slow
biodegradation. The training set consisting of 160 chemicals, a combination of
experts’ judgments for 48 chemicals (18) and 112 substances from the BIODEG
database (10), was used to develop three simple structure-based rules by means
of an example based learning system. This set of rules combines the structural
requirements necessary for fast (easy) biodegradation as follow:

• Chemicals with at least one acyclic C–O bond and the molecular weight
below 180

• Chemicals built of C, H, N, andO atoms, without a nitro group and having
more C–O bonds than rings

• Chemicals built of C, H, N, and O atoms, without a nitro group and the
molecular weight in the range from 95 to 135.

The low molecular weight; the presence of only C, H, N, and O atoms;
the presence of acyclic CO bonds as well as acid, ester, and anhydride groups
were found to stimulate biodegradation while the presence of rings, quaternary
carbons, and tertiary and aromatic amines results in slow biodegradation. This
set of rules was evaluated on the two small test sets, i.e. 23 and 17 chemicals.
The prediction results were excellent, 96% and 100% respectively (34, 35).
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This simple set of structural rules was also very successful in classifying easily
biodegradable chemicals from the BIODEG and MITI-I data bases, i.e. 85.4%
and 88.7%, respectively (26). Unfortunately, it was not equally successful in
evaluating poorly degradable chemicals since only 70.4% or 62.3% of chemicals
was correctly classified.

Consequently, several efforts have been made (8, 17, 26) to develop
an extended set of structural rules that will more correctly estimate the
biodegradability potential of chemicals from the BIODEG and MITI-I data bases.
The most recent effort in this area was performed using the inductive machine
learning method and biodegradation data for 762 substances measured according
to the MITI-I test protocol in order to develop structural rules for fast ultimate
biodegradation (8). The following seven rules have been derived for the easy
biodegradation (i.e., the chemical will biodegrade fast if any of the following
seven rules applies):

• esters, amides, or anhydrides with a larger number of ester groups than
rings

• all chemicals with at least one acyclic C–O bond and themolecular weight
below 129

• chemicals built of C, H, N, and O atoms and with larger number of esters
groups than rings but without a nitro group

• organic acids with molecular weight below 173 and with more acid
groups than halogen atoms

• chemicals built of C, H, N, and O atoms with the molecular weight below
129 having equal number of aromatic amino groups and acid groups but
without a nitro group

• esters, amides, or anhydrides with the molecular weight below 173 and
at least one acyclic C–O bond

• chemicals built of C, H, N, and O atoms with the molecular weight below
173 and at least one acyclic C–O bond, equal number of aromatic amino
groups and acid groups, but without a nitro group

This set of 7 rules is based only on 11 structural descriptors, selected from
a pool of 17 (Table I). It was possible to correctly classify 84.3% of chemicals
from the MITI-I database with a well-balanced classification of easily (84.9%)
and poorly (83.7%) biodegradable chemicals. An analysis of structural descriptors
present in the biodegradation rules was performed to extract information on the
requirements for either easy or poor biodegradation. The low molecular weight
(below 173); presence of only C, H, N, andO atoms in a chemical; presence of C–O
bonds; acyclic structures; as well as acid, ester, amide, and anhydride functional
groups all seem to be stimulating features for biodegradation. On the other hand,
the presence of rings, aromatic amines, halogen atoms, or a nitro group seems
to retard the biodegradation process. These findings are also consistent with the
general experience (32) and earlier findings (34).
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Table I. The Complete Set of Structural Descriptors Used to Develop Seven
Structural Rules for Fast Ultimate Biodegradation (MITI-I data) by the

Inductive Machine Learning Method (8, 26)

Structural descriptors

Presence of heterocyclic nitrogen atom

Presence of ester, amide, or anhydride groups

Number of chlorine atoms

Bicyclic alkanes

Chemical composed only of carbon, hydrogen, nitrogen, and oxygen atoms

Presence of nitro group

Number of rings

Presence of epoxy group

Primary alcohols and phenols

Molecular weight

Number of all C-O bonds

Number of tertiary amino groups

Number of quaternary carbon atoms

Number of C=C bonds

Number of aromatic amino groups

Number of acid groups

Number of ester groups

The set of seven rules was externally validated on 293 compounds from the
BIODEG database. The evaluation test showed that the overall performance of
the seven biodegradation rules is very good since 85% of the predictions were in
agreement with the observed biodegradability. The predictions were slightly better
for easily biodegradable substances, with 86.3% correct predictions vs. 83.6%
correct predictions for poorly biodegradable substances. The evaluation test shows
that the prediction scores on the training and test sets are very similar, and it
confirms a solid predictive potential of the seven developed biodegradation rules
for easily biodegradable chemicals.

In general, the inductive machine learning method develops the structural
rules without human input. By the examination of data, the computer deduces sets
of rules that best describe the modeled endpoint, in this case the biodegradability
of chemicals. Consequently, this approach may also suggest the degradation
processes, i.e. rules, which are not feasible in the natural environment. But,
more importantly, such a system may lead to the discovery of new rules, i.e. the
structure/biodegradability rules not previously known to experts. Today, it is also

66

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



possible to suggest the specific structural rules to the inductive learning systems
and the method will test it against the available data and include it into the final
set of rules if it is sufficiently relevant for biodegradability of chemicals.

A notable advantage of this approach is that a simple system of rules with
a relatively small number of structural features (11 structural descriptors) could
achieve such a high performance, comparable with that of far more complex
models like Biodeg1 to Biodeg7 modules having from 37 to 43 structural
descriptors. The main reason for such a drastic reduction (3-4 folds) of necessary
structural descriptors is the fact that the structural rules can also incorporate the
combinations of functional groups which are important for biodegradability of
specific chemical. This was done in a simple way since the rules do not specify
the relative position of relevant fragments. Nevertheless, the results show that
the biodegradation of a specific fragment should be considered in the context of
its molecular environment.

Another notable advantage of biodegradability rules developed by the
inductive machine learning method is that besides the structural (molecular)
features this artificial intelligence methodology can also handle the environmental
properties like acclimation, chemical concentration, the presence and type of
solids relevant for chemical bioavailabilty, and similar. Such environmental
properties relevant for biodegradability can be also included in the future sets
of logical rules either in the rule(s) of their own or combined with the structural
characteristics in the common rule(s). It is reasonable to assume that the models
accounting for actual environmental conditions will be more reliable in predicting
biodegradability.

MultiCASE and MultiCASE/META Expert Systems

The MultiCASE program (37–39) is a fully automated expert system that
analyzes the activity of a given set of compounds and automatically identifies
structural features and physicochemical properties that seem to be responsible
for the observed activity. This expert system generates all structural fragments
with two, three, or four heavy atoms and selects those that are statistically most
significant for the endpoint of interest, in this case biodegradability. The selected
structural fragments associated with easy biodegradability are known as the
biophores, while the structural fragments associated with poor biodegradability
are the biophobes. The novelty here is that the selection of relevant structural
fragments is based only on the training set chemicals and not on some predefined
rules or fragment databases. The MultiCASE modeling program has been
evaluated on a training set of 630 compounds (269 easily biodegradable and 361
poorly biodegradable) from the MITI-I dataset in order to investigate whether
its implicit variable selection procedure will result in the correct classification
of chemicals as easily or poorly biodegradable. The set of 269 compounds was
searched for fragments that stimulate biodegradability in the MITI-I test (the
biophores), while the second file of 361 compounds was searched for fragments
that impede biodegradability in the MITI-I test (the biophobes). By this procedure
program located 48 biophores that explain MITI-I data for all 269 biodegradable
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compounds, as well as 10 biophobes. Finally, a multiple linear regression (MLR)
model was built between the 58 selected fragments and the MITI-I data and such
model was capable to correctly classify 92.5% of data in the training set.

The test set of 244 compounds not used in the model development was used
to evaluate the ability of selected 58 fragments (the biophores and biophobes) to
correctly classify biodegradability of the test set chemicals. First, all compounds
were searched for the presence of biophores. This search resulted in 41 warnings,
indicating compounds with structural fragments that may be the potential
biophores but none was present in the training set. In such cases, it was not
possible to make predictions since the program cannot evaluate the effect of
“unknown” fragments on biodegradability. In addition, one compound was too
small to contain any biophore. This reduced the test set to 202 compounds.
Due to the absence of a biophore, 106 compounds were predicted as poorly
biodegradable. This was a correct prediction for 95 compounds (89.6%) according
to their MITI-I values. Furthermore, 96 compounds were predicted to be easily
biodegradable due to the presence of a biophore, but this was correct only for 43
of those chemicals (44.8%). Thus, the presence of a biophore in a molecule does
not mean that such compound will be easily biodegradable. The test set of 244
compounds was then searched for the biophobes. The second search resulted in
37 warnings on potential biophobes. Thus, the test set has to be reduced to 207
compounds. Due to the presence of a biophobe, 111 compounds were predicted
to be poorly biodegradable, while 96 were predicted as easily biodegradable due
to the absence of any known biophobe. According to MITI-I test data, these
predictions were correct for 82 (73.9%) and 65 (67.7%) compounds, respectively.
From the results of external validation, it is clear that the MultiCASE model
performs very well for the prediction of poor biodegradability based on the
absence of known biophores. In that case, the success rate is 89.6%, which is
a very good performance for the external validation. The absence of a known
biophore indicates a lack of an active site for microbial attack, and it seems to be
a good indicator for a poor biodegradability of a compound. Other assumptions
based on the presence or absence of biophores or biophobes result in low
prediction scores (44.8–73.9%) and cannot be used in evaluation of a compound’s
biodegradability. The poor performance of the model based on the presence of a
biophore may be rationalized either by: (i) the presence of a biophore that will
not lead to a complete biodegradation (mineralization) or (ii) the simultaneous
presence of a biophobe in a molecule that will make its biodegradation difficult.

The MultiCASE approach has also been used to model anaerobic
biodegradation in aquatic media (40). Only the high-quality data for 79 chemicals
from the Environmental Fate database (41) has been used in this modeling effort.
In such data set, 45 chemicals were easily biodegradable, 16 were inactive under
anaerobic conditions while 18 were only marginally biodegradable. MultiCASE
program identified aromatic and aliphatic thiols, methoxy, alcohol, and carboxylic
ester groups as the anaerobic biophores, but no significant biophobes were found.
The relevance of identified biophores was confirmed because all were associated
with the known metabolic transformations. In the MultiCASE approach,
chemicals with one or more biophores are classified as easily biodegradable
unless there is one or more biophobes. Thus, the inability to identify the anaerobic
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biophobes has significantly influences model ability to correctly classify poorly
biodegradable chemicals. Consequently, the MultiCASE model for anaerobic
biodegradation was better in classifying easily biodegradable chemicals (89%
correct) than those that are poorly biodegradable (64% correct).

One of the first expert systems for biodegradability was a hybrid
approach based on the combined use of MultiCASE and META (42). The
MultiCASE/META system relies on the statistics to set the hierarchy and on
the mechanistic understanding for development of the rules. META is an
automatic rule induction program that gives qualitative predictions of the aerobic
biodegradation pathway (42, 43) and it is composed of 70 transformations that
match 13 biophores found by MultiCASE analysis from the literature data (39).
The weights of the biophores calculated by MultiCASE are used to define the
hierarchy of transformation rules for a given parent chemical structure. In the
next stage of this expert system development (44) several biophobes (C−halogen,
C−NO2, C−CN, C−NH, and branched aliphatic chains) were also identified
by analyzing 200 chemicals from the MITI-I database. The improved model
performed very well on a small validation set and correctly classified all 34
chemicals.

The results of MultiCASE model can be easily rationalized and their
mechanistic interpretation is also possible. One potential problem is that all
relevant biophores and biophobes are not located during the model development
since the specific structural features important for biodegradation are not
present in the training set. Thus, such model may fail when used to predict
biodegradability of chemicals outside applied training set. Furthermore, the
MultiCASE model seems to be better suited for identifying poorly biodegradable
chemicals. Namely, even the presence of a single biodegradation retarding
fragment (the biophobe) can prevent mineralization, while the presence of one
or more biodegradation enhancing fragments (the biophores) only indicate the
possible metabolic pathways, which may not lead to the mineralization.

CATABOL Expert System

CATABOL is another expert system (45–47) that predicts the possible
transformation products formed by biodegradation of the parent compound.
This hybrid system consists of a knowledge-based system for predicting the
biotransformation pathways and a probabilistic model that calculates the
probabilities of each transformation as well as the overall biochemical oxygen
demand (BOD) and/or CO2 production. The novelties of this expert system are
that (i) the biodegradation potential of parent compound is determined from all
individual steps in the biodegradation pathway and (ii) it explicitly takes into
account the effect of adjacent fragments before executing each transformation
step. The system contains a library of more than 500 individual transformations
(abiotic and enzymatic) (21) that are hierarchically ordered. The hierarchy is set
according to the descending order of the individual transformation probabilities.
Before any individual transformation is applied on a target fragment, the presence
of adjacent inhibitory fragments is checked for since such fragments may
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either completely prevent the specific transformation or significantly reduce its
probability to occur. The mineralization process may be a long sequence of
transformations but the number of critical steps (the rate-determining steps) for
mineralization of individual chemical is small.

Based on above principles, several specific models have been developed
for various biodegradability endpoints and incorporated into the CATALOGIC
software suite (http://oasis-lmc.org/products/software/catalogic.aspx). In
CATABOL 301C model, the probabilities of individual transformations were
deduced from the BOD data of 745 compounds from the MITI-I database.
The catabolic reactions with similar BOD and similar targets are assumed to
have the same probability. Since analysis of the MITI-I data resulted in many
transformations with equal probability, their hierarchy is established based on
expert knowledge. The model correctly classified 85% of easily biodegradable
chemicals and 91% of poorly biodegradable chemicals. In CATABOL 301B
model the probabilities of individual transformations were deduced from the
percentage of theoretical CO2 release in 28 days (Modified Sturm test) of
109 compounds. This model correctly classified 88% of easily biodegradable
chemicals and 73% of poorly biodegradable chemicals. Furthermore, both models
also enable the identification of potentially persistent catabolic intermediates
which is beyond the capability of previous biodegradability models. The
applicability domains of CATABOL models are defined by the range of log Kow
data, molecular weights and fragments of correctly classified chemicals from
their respective training sets. Although, the biodegradation pathways predicted
by CATABOL models are subject to considerable uncertainty, the CATABOL
models outputs can be very helpful in determining the degradation pathways of
chemicals for which the critical data are missing (48).

The Multivariate PLS Model

A multivariate PLS model for classifying organic chemicals as easily or
poorly biodegradable under the MITI-I test conditions was proposed by Loonen
et al. (8, 49, 50). The model is based on MITI-I data for 894 substances of widely
varying chemical structure of which 388 chemicals were easily biodegradable
while 506 were poorly biodegradable. It was developed in several steps. A
set of 127 predefined structural fragments was selected (51) and a descriptor
matrix was developed indicating the absence or presence of each fragment in
894 chemicals. A model was developed in which the MITI data were correlated
with the structural fragments using the PLS discriminant analysis. The developed
PLS model generates predictions on a continuous scale from zero to one. Thus, a
transformation was needed to compare such predictions with the original binary
data for biodegradability. The continuous scale was divided into two areas, >0.55
and <0.45, corresponding to easily biodegradable and poorly biodegradable
chemicals, respectively. Estimates between 0.45 and 0.55 were considered the
borderline cases and as not reliable (50).
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The analysis of PLS model has shown that about one third of fragments, i.e.
44 fragments, have positive regression coefficients and enhance biodegradability
of chemicals. The two most important positive fragments are related to the long
non-branched alkyl chains which are known to be susceptible to oxidation. Other
fragments associated with a significant positive effect on the biodegradability
are one or more hydroxyl group(s) attached to a chain structure, and one or
more carbonyl, ester, or acid groups attached either to a chain or ring structure.
Chain structures with these fragments are susceptible to the oxidation processes
and the formation of carboxylic acids through the intermediate formation of
aldehydes. The aromatic rings with such fragments are degraded through the
formation of catechol followed by the ring opening. The majority of structural
fragments in PLS model, i.e. 83 fragments, is associated with the negative
regression coefficients and inhibits biodegradation. The most important inhibiting
fragments are one or more aromatic rings, and fragments with one or more
halogen substituents on a chain or ring structure. These findings are consistent
with the observations that the aerobic biodegradation decreases with the degree of
halogenation. The PLS biodegradation model has very good overall classification
ability, about 85%. However, it should be noted, that this result excludes
predictions made for about 10% of chemicals whose estimated values were
between 0.45 and 0.55. As described earlier, this is the borderline area and such
estimates are not reliable and should not be used.

The influence of interactions between fragments within the same molecule
was also investigated (8, 49, 50). A two-step variable selection was performed
in the development of the model with fragment–fragment interactions to keep
the model size manageable. In the first step, 97 structural fragments were
selected which were present in at least five chemicals. Then, the most important
fragment–fragment interactions were selected on the basis of their PLS regression
coefficients, i.e., the additional 706 variables. With these additional variables, the
model overall classification ability increased to 89%. The improved classification
ability is almost entirely related to the poorly biodegradable chemicals since their
classification improved significantly, i.e. from 86% to 92%.

The PLS model could not be externally validated by the use of the MITI-I test
data since all data were used as a training set. Thus, the training set of 894 MITI-I
data was divided into four subsets each consisting of 25% of chemicals from
the database. Consequently, the four sub-models without fragment–fragment
interaction terms were developed each time using three different subsets of
chemicals. For each sub-model the remaining subset was used for “external”
validation. The correct classifications for easily biodegradable chemicals in four
subsets were from 83% to 87% while for poorly biodegradable chemicals the
range was from 77% to 83% (8, 50). These results show that classification scores
of internal and “external” validation are similar and confirm a solid predictive
capability of the multivariate PLS model.

The application domain of multivariate PLS model is restricted by the
presence of the respective fragments in the target chemical. Thus, this PLS model
can be applied to all chemicals having at least one of the 127 fragments in their
molecular structure. The broad range of structural fragments used in developing
the PLS model allows its application to a wide variety of chemical structures.
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General QSAR Models for Biodegradability

The first general QSAR model for evaluating biodegradability of organic
chemicals was developed about 25 years ago (7). This relatively simple model,
4 structural descriptors and 3 correction factors, is based on biodegradability
data obtained from a survey in which 17 experts evaluated the ultimate aerobic
biodegradability of 50 organic chemicals (18). Although, the training set was
relatively small, it covered a wide range of structures and molecular weights,
and almost all those chemicals were highly multifunctional. Two different test
sets, 23 and 17 chemicals, of high quality data from BIODEG database have
been used to evaluate the predictive potential of this simple QSAR model (52,
53). QSAR model was successful in correctly classifying 90% of test chemicals.
This independent test demonstrated the general applicability of developed QSAR
model.

In this section only the most recent efforts to develop general QSAR
models for evaluating biodegradability of organic chemicals, i.e. the quantitative
structure/biodegradability relationships (QSBR) models, will be evaluated since
several extensive reviews are already available (8–10, 17, 21, 54, 55) that cover
earlier developments. Recently, two extensive modeling studies have been made
to develop the generally applicable QSBR models for predicting biodegradability
of organic chemicals (15, 56). The first study by Cheng et al. (15) was published
about two years ago and the largest heterogeneous training set of 1440 compounds,
i.e. MITI-I data, was used to develop generally applicable QSBR models. The
main idea was to develop the complete in silico method to estimate chemical
biodegradability in the environment using 148 physicochemical descriptors
and 7 types of fingerprints calculated only by the open source tools. The four
different descriptors reduction methods were systemically used to develop the
best combinatorial classification probability models, i.e. (i) the correlation-based
selection of top ten descriptors, (ii) the classification and regression tree algorithm
(57), (iii) Chi-squared automatic interaction detector (58), and (iv) the support
vector machine with genetic algorithm with stepwise selecting process. The
following seven fingerprints implemented in PaDEL-Descriptor (59) were tested
in this study; the CDK fingerprint, CDK extended fingerprint, Estate fingerprint,
MACCS keys, PubChem fingerprint, Substructure fingerprint, and Klekota-Roth
fingerprint (59, 60).

The four different machine learning methods, namely the support vector
machine, k-nearest neighbor, naive Bayes, and C4.5 decision tree, were used
to develop the classification models for biodegradability of organic chemicals
using the physicochemical descriptors and fingerprints separately. Consequently,
a significant number of models with reasonably high classification power were
built in this study, 16 with physicochemical descriptors and 32 with various
fingerprints. More specifically, models developed with the physicochemical
descriptors correctly classified from 65.9% to 100% of the training set chemicals
while the range of correctly classified chemicals for the models based on
fingerprints was 73.7-100%. All models with high classification power were
validated by a test set consisting of 164 diverse chemicals collected from the
US-EPA BIODEG database and literature (25, 29). Unfortunately, the success
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of developed models was only moderate in classifying biodegradability of the
external test chemicals, i.e. 61.0–84.2% for 16 physicochemical models and
65.2–82.9% for 32 fingerprints models. Even four models having the perfect score
with the training set chemicals performed significantly poorer for the external test
set, i.e. the respective scores were 75.6, 78.7, 84.2 and 65.2% or only 75.9% on
average. Furthermore, all developed models have lower predictive power than
the set of seven simple structural rules described above (8).

Due to the poor performance of the best developed models in classifying
biodegradability of chemicals in the test set, the seven newmodels were built using
all previous training and test set chemicals, i.e. 1604 compounds in the training
set. The 5-fold cross-validation procedure was used to evaluate the ability of new
seven models to correctly classify biodegradability of the previous test chemicals.
Their respective scores were somewhat improved and ranged from 78.6% to
91.2% but those results are not the true measure of models predictive power since
all test set chemicals have been used in the models development. Moreover,
27 additional chemicals without MITI-I test data were selected for the so-called
blind test and their biodegradability was estimated by those seven models.
Consequently, the biodegradability of those 27 chemicals was measured using the
MITI-I test protocol. The comparison of newly measured data and predictions
made by the seven new models has shown very good to excellent classification
results for the six of those models, i.e. from 85.2 to 100% of correct classification.
In addition, the consensus model using the mean method (61) was applied to
the blind test chemicals and achieved a perfect score. Unfortunately, there is
no proof that described exercise is a true blind test and that the experimental
assays for 27 chemicals were performed a posteriori. Furthermore, it is quite
strange that the selected test set of 27 chemicals is extremely unbalanced and that
almost all selected chemicals are poorly biodegradable, i.e. 23 vs. 4 chemicals.
It was also not reported which criteria were used to select 27 chemicals for the
so-called blind test. Unfortunately, it was also not evaluated if this small external
validation set is representative of the chemical space of the developed model, but
four molecules definitively cannot cover the chemical domain of models based
on 1604 chemicals. Finally, it should be noted, none of developed models was
explicitly reported in this study and consequently such models are not of general
use (62) and can be only applied for predicting biodegradability by the authors.

Another set of generally applicable QSBR models for predicting
biodegradability of organic chemicals (56) was published in 2013. The aim of
this study was also to develop the reliable classification QSAR models for ready
biodegradability of chemicals by using different modeling methods and wide
range of molecular descriptors. Again the experimental biodegradability values
were from the MITI database and collected from the webpage of the National
Institute of Technology and Evaluation of Japan (NITE). The initial data set
consisted of 1309 chemicals. Data were carefully screened to ensure that each
individual value is in accordance with the OECD test protocol (301 C) and that
the correct chemical structures were used. The remaining 1055 chemicals, i.e.
356 easily and 699 poorly biodegradable molecules, were used for modeling. The
resulting data set was split into the representative training (837 molecules) and
test (218 molecules) sets before modeling. DRAGON software version 6 (63)
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was used to calculate molecular descriptors. A filtering of the descriptors was
performed and constant, near constant, and correlated descriptors were removed.
A total of 781 descriptors were used in the subsequent modeling.

Three different classification methods were used to develop the appropriate
relationships between the molecular structures, encoded in molecular descriptors,
and the biodegradability of chemicals: the k nearest neighbors (kNN) (64),
the partial least squares discriminant analysis (PLSDA) (65, 66), and the
support vector machines (SVM) (67). The application of methods founded
on different mathematical strategies aimed to fully explore the chemical space
and avoid potential biases of individual modeling algorithm. Furthermore, the
genetic algorithms (GAs) were applied to select the optimal subset of molecular
descriptors with each classification method (68). The genetic algorithms were
calculated first on each block of molecular descriptors, i.e. constitutional indices,
ring descriptors, topological indices, 2D matrix-based descriptors, functional
group counts, atom centered fragments, atom-type E-state indices and 2D atom
pairs. Descriptors selected from each block were merged and GAs were applied
again to find the most appropriate subset of all molecular descriptors to calibrate
the final QSAR models. The final models were selected taking into consideration
the results of cross-validation as well as balanced classification. The final
classification models based on the kNN, PLSDA and SVM approaches had 12,
23 and 14 molecular descriptors, respectively.

The three classification models have comparable scores in fitting and
cross-validation with calibration set chemicals, i.e. 86% of chemicals were
correctly classified. The balanced classification is achieved for the kNN and
PLSDA models while for the SVM model there is a significant difference (11%)
between the classifications of easily and poorly biodegradable chemicals. In the
case of test set chemicals the classification scores of all three models was high
(85-86%) and close to the results in fitting and cross-validation. The SVM and
kNN models showed better performance in classifying poorly biodegradable
chemicals by 9%.

The consensus analysis (61) was also applied to combine classification power
obtained by the three different modeling techniques. Two different consensus
algorithms were used: (i) each molecule was classified to the more frequent
class obtained by the classification of individual kNN, PLSDA and SVM models
(consensus 1) and (ii) a molecule was classified only if there is a consensus
between all three models; otherwise, it remained unclassified (consensus 2). In
the case of consensus 1 approach classification results were improved by 3%
for the calibration set chemicals (the fitting and cross-validation) and only by
1-2% for the test set chemicals. Again, the balanced classification is achieved for
calibration chemicals and better performance by 10% is achieved in classifying
the poorly biodegradable test set chemicals. In the case of consensus 2 approach,
the classification results were significantly improved (7%) for the calibration
chemicals and the balanced classification is maintained. However, the penalty for
significantly improved classification score was that about 20% of chemicals were
not assigned. Similar result was achieved in classifying the test set chemicals; the
improved classification by 5-6%, a better performance (6%) in classifying poorly
biodegradable chemicals and 15% of unassigned chemicals.
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All three individual classification models and two consensus approaches
were additionally validated using an external validation set consisting of 670
chemicals. This validation set contained 464 chemicals from the data set used by
Cheng et al. (15) and 206 persistent and bioaccumulative compounds from the
Canadian Domestic Substances List (DSL) database (69). A good classification
performance (82-87%) was obtained and results of validation for the three QSAR
and two consensus approaches are close to the cross-validation and test set
validation. Unfortunately, the classification was not well balanced and better
performance up to 17% is achieved in classifying the poorly biodegradable
chemicals. Also, 13% of chemicals were not classified by the consensus 2
approach.

Altogether, 41 molecular descriptors were used in all three classification
models which mean that there is a very small overlap in selected molecular
descriptors between different models. Specifically, only one molecular descriptor,
i.e. the leading eigenvalue from Laplace matrix, is used in all three classification
models and additional six molecular descriptors were selected by the pair of
models. However, the structural analysis shows that descriptors selected in
each QSAR model encoded similar information, i.e. the presence of halogens,
branching, nitro and amino groups, rings and some other functional groups. It
is well known for years (8–10) that such structural features are related to slow
biodegradability. Finally, it should be pointed out that none of three QSAR
models was explicitly reported in this study and consequently such models are
not of general use (62) and can be only applied for predicting biodegradability by
the authors.

Partial Biodegradability and Transformation Products

Microbial degradation in natural and artificial (manmade) ecosystems
normally results either in a complete removal of target pesticide or pesticide
remains intact if relevant microbial populations are not present. However, in
some cases biodegradation processes, i.e. biotransformation (70), may also
produce stable transformation products (TPs). Whether and what type of TPs
are formed in the environmental and engineered systems from a given chemical
depends on the precursor’s chemical structure, but also on its distribution between
different environmental compartments. Due to the rather complex molecular
structures of modern chemicals, it is very likely that their microbial degradation
will often result in the formation of stable TPs. In general, the oxidative processes
lead to TPs that are more polar and consequently more mobile and less toxic
than the parent compounds (71). However, there is plenty of evidence that the
biotransformation of parent molecules can also yield toxicologically relevant
TPs. Typical examples are the pro-pesticides like organophosphate insecticides
containing a phosphorothioate or phosphorodithioate moiety which are oxidized
by cytochrome P450 monoxygenases and produce oxon metabolites that are
more potent inhibitors of acetylcholinesterases than their precursors (72). Two
other typical examples are the microbial transformation of triclosan to the more
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bioaccumulative methyl-triclosan (73), and the microbially mediated oxidative
cleavage of phenoxy herbicides that yield substituted phenols acting as uncouplers
of energy-transduction (74). Furthermore, there is growing evidence that the
microbial transformations producing stable TPs are important for environmental
compartments such as soils or sediments as well as for the engineered systems
such as activated sludge (75, 76).

Today, the transformation products are an important issue in the chemical
risk assessment and environmental research since a transformation product
may be even more bioaccumulative and/or toxic than the parent chemical.
Consequently, the significant research efforts have been made on the detection
of transformation products in the environment, on the identification of relevant
transformation products and their potential adverse (toxic) effects and on
evaluating environmental risk related to the transformation products (70, 77–80).
The occurrence of transformation products in the environment has been recently
reviewed by Kolpin et al. (81). Today, the high-resolution mass spectrometric
techniques enable the fast, sensitive, and reliable detection of transformation
products even in the absence of chemical reference standards (79, 82–85).
The high-resolution mass spectrometry has been used by Kern et al. (79) to
screen for about 2000 known and predicted transformation products of 50
pesticides, biocides, and pharmaceuticals in Swiss surface waters to obtain a more
comprehensive picture of their presence in the aquatic environment. For about
half of the investigated parent compounds one or two transformation products
were found in the seven surface water samples analyzed. In an analogous
recent study the high-resolution mass spectrometry was applied to screen the
environmental samples for 150 well known pesticide transformation products as
well as for various suspected transformation products (86). A more complete
picture of pesticide transformation products in the environment will emerge over
the next years primarily due to the major advances in mass spectrometry.

Several computational tools described earlier are currently available
for predicting the aerobic, microbial transformation pathways of organic
compounds and the structures of potential transformation products. Those are
MultiCASE/META (39, 42, 43) and CATABOL (45–47) as well as PathPred
(87)) and the University of Minnesota Pathway Prediction System (UM-PPS) (88,
89). A set of 1512 potential transformation products was predicted by UM-PPS
for 52 pesticides, biocides, and pharmaceuticals. The subsequent search for
the predicted transformation products resulted in the identification of 19 such
compounds in environmental samples (79). In another study 26 transformation
products, derived from 12 parent compounds, were detected in activated sludge
batch reactors by various high-resolution mass spectrometry techniques (82).
Of these 26 transformation products, 21 were predicted by UM-PPS. In order
to transform UM-PPS into an efficient and fast screening tool for potential
environmental transformation products, the large number of pathways normally
suggested by UM-PPS can be drastically reduced by a set of three simple rules
(80): (i) removing analogous products, (ii) selecting only the most likely products
and (iii) products generation is limited on the first two generations. The reduction
scheme was tested on 22 pesticides and its average efficiency was 84% (80, 90).
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The majority of biodegradability classification models described in previous
sections, i.e. the BIOWIN models, the logical structural rules, the multivariate
PLS model and general QSAR models, cannot distinguish between the poorly
biodegradable chemical and biotransformation of parent chemical into a stable
transformation product since their BOD data will be similar. However, besides
parent compounds, the stable transformation products should be also used
to calibrate and evaluate the quality and reliability of those biodegradability
classification models.

Although important advances have been recently made in this research area,
a more complete picture of pesticide transformation products in the environment
will emerge over the next years based on interdisciplinary and/or multidisciplinary
research combining results obtained by the application of molecular genetics
methods, stable isotopes analysis, bioinformatics and sensitive mass spectrometric
methods (77).

Biodegradability Modeling Recommendation and Perspectives

Today there is an array of models for classifying the biodegradability of
organic chemicals and some of them can also evaluate the most important
microbial degradation pathways responsible for their biodegradability. Those
models range from simple group contribution models, models based on
chemometric methods up to expert systems based on various artificial intelligence
techniques. However, their number is quite moderate if compared to a general
proliferation of QSAR models for other environmental end-points. The main
reason is still, as it was pointed out more than a decade ago (8), the deficiency
of standardized and uniform biodegradation data for various chemical classes.
In the last ten years only the MITI-I database has been extensively amended by
new data. The majority of biodegradability models presented and evaluated in
this review have a classification rate in the 85-90% range, thus showing a solid
classification power.

BIOWINmodels are the most widely used for evaluating the biodegradability
potential of organic chemicals. Consequently, BIOWIN models have been most
extensively evaluated and independently validated and this is definitively their
major advantage. In one of the recent evaluation studies, the BIOWIN models
were also probed in predicting the biodegradability of 42 pharmaceuticals and drug
intermediates (91). The main feature of BIOWIN models is that all models are
more suitable for classifying the easily biodegradable chemicals. Furthermore,
their applicability domain is clearly defined and their potential drawbacks and
pitfalls are covered in the Biodegradation Probability Program manual. Thus,
if adequately applied, BIOWIN models should supply in most cases a reliable
biodegradability classification for organic chemicals. The last but not the least,
the BIOWIN models are easily available and freely downloadable as a part of the
EPI Suite software.

The classification model based on a set of seven logical structural rules was
successful in evaluating biodegradability potential of organic chemicals in the
training set (MITI-I data) as well as in the test set (BIODEG data) using only
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11 structural descriptors. Its main advantages are that the binary character of
biodegradability data is perfectly suited for developing the logical structural
rules for easy/poor biodegradability and that the combination and/or relationship
between two or more functional groups can be incorporated in any structural
rule. Furthermore, each logical structural rule has a straightforward physical
explanation or rationalization. Thus, it is a pity that this simple and logical
classification model was not more extensively evaluated and tested by the
independent research groups. In the future, the machine learning approach should
be used to develop the complementary set of logical structural rules for poorly
biodegradable chemicals and a new class of biodegradability rules that will also
include environmental properties relevant for biodegradability.

MultiCASE, MultiCASE/META and CATABOL/CATALOGIC are fully
automated expert systems that can successfully classify biodegradability of
organic chemicals. Furthermore, the MultiCASE program also identifies
structural features, the biophores and biophobes, which seem to be responsible
for the biodegradability potential of organic chemicals. The major advantage
of MultiCASE/META and CATABOL/CATALOGIC expert systems is their
ability to suggest the potential microbial transformation pathways of organic
compounds as well as the structures of potential intermediates and stable
transformation products. Moreover, the results of those expert systems can be
easily rationalized and usually have a mechanistic interpretation. The expert
systems MultiCASE/META and CATABOL/CATALOGIC are commonly used
for estimating the biodegradation of organic compounds for regulatory purposes.

The multivariate PLS model also seems to be useful for discriminating
between easily and poorly biodegradable organic chemicals. Unfortunately, it
was not extensively evaluated and validated since its development 15 years ago.
Its main comparative advantage is that the effect of intra-molecular interactions
between fragments is incorporated into the final model. It should be also pointed
out that the large majority of important fragment-fragment interactions obstruct
the potential biodegradation processes of organic chemicals and helped to improve
the correct classification of poorly biodegradable chemicals.

Recently two similar sets of general in silico QSAR models have been
developed and suggested as an accurate tool for classifying biodegradability
of organic chemicals (15, 56). Both QSAR systems are developed from the
large number of calculated descriptors including various fingerprints, using
several machine learning methods and the most recent collection of MITI-I data.
However, their biodegradability classification power is hardly better than that of
much simpler classification models like the group contribution models, a simple
set of structural rules and automated expert systems described above, i.e. in the
85-90% range. These results are somewhat disappointing since the application
of a large arsenal of molecular descriptors and statistical tools including machine
learning methods complemented by a very large set of uniform biodegradability
data has not resulted in the much improved classification power of developed
models. Furthermore, both studies have only confirmed the well known structural
features that are relevant for the biodegradability of organic chemicals. From
practical point of view, the developed in silico QSAR models are of little use
since none was explicitly reported.
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It seems that the best strategy that can be recommended for estimating
biodegradability of organic chemicals is similar to one proposed about a decade
ago (8), i.e. the consensus approach. Namely, it was recommended to apply
all relevant and reliable models for classifying the biodegradability of organic
chemicals. Today those are the appropriate BIOWIN model, the set of seven
structural rules, the MultiCASE system, the appropriate CATABOL model and
the multivariate PLS model. If the classification results of all five models are
in agreement, such classification should be considered as very reliable. If the
results of four out of five models agree, such an estimate should be considered as
reliable. Finally, when only three models agree in classifying a specific chemical,
such a prediction should be considered only as reasonable and used with caution.
Furthermore, in the case of partial consensus the information on reliability of
individual classification models should be also taken into account, i.e. that
Biowin1-6 models are more accurate in classifying the easily biodegradable
chemicals, that CATABOL 301C model is also more accurate in classifying the
easily biodegradable chemicals, that the multivariate PLS model is more accurate
in classifying the poorly biodegradable chemicals, etc.

About two decades ago the first studies were published on a detailed
quantum-mechanical ab initio analysis of reaction mechanisms and reaction-path
dynamics of the major degradation processes in the troposphere (92–95). Those
studies have been primarily focused on the reactions of volatile hydrocarbons
and their halogenated derivatives with the hydroxyl (OH) radicals since such
chemicals are commonly present in the gas phase (96–99). In the following
years similar studies have been performed for other chemical classes including
various pesticides and flame retardants like polybrominated diphenyl ethers
(100–103), other tropospheric oxidation species like NO3 radicals and ozone
(104, 105) as well as for the reactions of OH radicals in aqueous medium (106).
Consequently, due to the continuous and fast advances in computing technology
(hardware and software), today such studies are almost routine as well as the
standard procedure for calculating the reliable rate constants for tropospheric
degradation of organic chemicals. In the coming years we will witness the
analogous developments in the area of biodegradation where the environmental
relevant microbial degradation processes will be accurately modeled under the
realistic environmental conditions including appropriate medium (107–111). This
will be achieved by the multilayered integrated molecular orbital and molecular
mechanics computational approaches developed by Morokuma and co-workers
(112). The combined Quantum Mechanical/Molecular Mechanical (QM/MM)
methods can be used to characterize the free energy pathway of enzymatic
reactions and obtain valuable information about the reaction mechanism,
intermediate or stable transformation products as well as about the kinetics and
thermodynamics of enzymatic reactions (113–115). The Nobel Prize in Chemistry
for 2013 was awarded for the early developments of such multiscale methods that
can be applied to the complex chemical and biochemical systems.
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Chapter 5
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The sorption of pesticides to soils or sediments is the major
factor determining their mobility, transport and bioavailability
in terrestrial and aquatic environments. The organic matter is
the primary sorption domain in soils or sediments and sorption
is considered to be primarily a partitioning process between
soil organic matter and the surrounding water. The soil sorption
coefficients normalized to the sorbent organic carbon content
(Koc) are currently used as a quantitative measure of sorption of
chemicals by soil/sediment from aqueous solution. Today, many
quantitative structure–activity relationship (QSAR) models
based on various physical or chemical properties and structural
descriptors have been developed and are used to estimate the
Koc values of organic chemicals. The main objective of this
chapter is to overview and evaluate the recent developments in
(i) log Koc vs. log Kow models, (ii) poly-parameter linear free
energy relationship (pp-LFER) models, (iii) models for ionized
chemicals and (iv) other major modeling advances. Each
QSAR modeling area is critically analyzed and advantages
and/or limitations of different modeling approaches are given.
In addition, recommendations are given on the application
and reliability of individual QSAR models for estimating soil
sorption coefficients of organic chemicals.
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Introduction

To accurately access human exposure to chemicals released into the
environment and their adverse environmental effects, the environmental fate of
chemicals must be known. Sorption of chemicals to soil/sediment is one of the
major factors determining their mobility, transport and bioavailability in terrestrial
and aquatic environments (1). For various chemical classes, organic matter (OM)
is the primary constituent responsible for sorption in soil or sediment and sorption
is considered as a partitioning process between soil OM and the surrounding
water. This is of special relevance to the fate and behavior of pesticides, which
are in continuous contact with soil particles following their application to the
field. The soil sorption coefficients are currently used as a quantitative measure
of the extent of sorption of chemicals by soil/sediment from aqueous solutions
(2–4). They are defined as the ratios (denoted as Kd) between the concentrations
of a given chemical sorbed by the soil and dissolved in soil water. In order to
compare the soil sorption coefficients measured for different soils, the Kd values
are often normalized either to the total organic carbon content of the soil (Koc)
or the organic matter content of the soil (Kom). These two normalizing schemes
are simply related by a factor 1.724; thus, it is easy to convert soil sorption
coefficients reported on either basis.

For modeling the sorption of organic compounds in soils it is typically
assumed that the organic carbon/water partitioning coefficient (Koc) of neutral
organic chemicals can be treated as a constant property that remains unaffected
by the type of soil organic matter as well as by the pH of the soil solution. The
assumption of the existence of a “representative” Koc value is critical to any
approach used for Koc estimation. There is substantial evidence suggesting that
the average organic matter of many soils and sediments is of reasonably uniform
quality (5–12). In an early study (13) this assumption was extensively tested on
two nonpolar compounds (1,2-dichlorobenzene and carbon tetrachloride) for a
large number of sorbents, i.e. 32 soils and 36 sediments. A very low variation
was found in the Koc values within soil samples or sediment samples and only a
small difference (0.22 log units) was found in log Koc values for soils relative to
sediments. In a more recent review (14), the logKoc values were collected from the
literature for eight chemicals of varying polarity and for each of those chemicals
the results were available for at least 10 and up to 73 different soils or sediments.
The standard deviation of log Koc values for those eight chemical ranged from
0.13–0.24. Finally, this assumption was additionally validated in a recent study
(15), where 60 chemicals were tested on four soils. It was demonstrated for this
large set of neutral chemicals that their soil sorption coefficients normalized to
the soil organic carbon content are practically independent of pH, ionic strength,
sorbate concentration, and type of soil or organic matter, having a standard
deviation of 0.25 log units. Thus, it seems that the idea of universal Koc values
for various types of soil organic matter, originally put forward by Kile et al. (13),
holds in general.

The soil sorption coefficients normalized to the soil organic carbon content
(Koc–activity relationship (QSAR) models (16) based on a variety of physical or
chemical properties and structural descriptors such as n-octanol/water partition
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coefficients, aqueous solubility, molecular connectivity indices, molecular
weight, molecular surface area and reverse-phase high-performance liquid
chromatography retention time (2–4, 12, 17–22). In this chapter the following
important subjects from this research area will be overviewed: (i) the log Koc
vs. log Kow models, (ii) the poly-parameter linear free energy relationship
(pp-LFER) models, (iii) the models for ionized compounds and (iv) the major
modeling efforts not covered by previous sections. Each of those subjects will
be critically analyzed with a focus on more recent advancements and clear
description of the advantages and limitations of different modeling approaches
(23, 24). Finally, specific recommendations will be given on the application and
reliability of specific QSAR models for estimating soil sorption coefficients of
organic compounds.

Log Koc versus log Kow Models

The majority of reported quantitative structure–activity relationships
(QSARs) for estimating Koc’s are based on the relationship between Koc and the
n-octanol/water partition coefficient (Kow) (4, 6, 8, 17, 25–29). These linear
regression models are usually expressed by relating log Koc to log Kow (2, 4, 27).

Although almost all published linear regression models between log Koc and
log Kow coefficients are purely empirical, by nature it seems obvious that those
coefficients should be also thermodynamically related since both are related
to basic molecular properties like size, shape and polarity. For the majority of
chemicals both those processes are spontaneous and mainly enthalpy–driven
while the entropy can also significantly contribute to the negative free energy
change (30, 31). Interaction forces that may be involved in those two processes
are van der Waals interactions, electrostatic interactions, hydrogen bonding,
charge transfer, ligand exchange, direct or induced dipole–dipole interactions,
hydrophobic bonding, chemisorptions and partitioning. Which of those forces
will be dominant for soil sorption process and octanol–water partitioning of a
specific chemical will naturally depend on the properties of the solid sorbent and
chemical solute. Thus, it is unrealistic to expect that there will be a general linear
regression model relating log Koc to log Kow.

There are two major obstacles that prevent reliable use of published linear log
Koc–log Kow models for estimating soil sorption coefficients. First, there is a large
variability in measured and publishedKow data particularly for highly hydrophobic
compounds well known as POPs (persistent organic pollutants) (32, 33), which
translates into large uncertainties in the soil sorption coefficients estimated by such
linear log Koc–log Kowmodels. Nearly three decades ago it was pointed out for the
first time that there is a large uncertainty in measured and published n-octanol/
water partition coefficients (3, 34, 35) and this problem has been periodically
revived in this century in the relevant literature (36, 37). Despite those clear
warnings published in the relevant literature, even today, erroneous Kow data are
still in use and propagate through the literature (36, 38). The examples of major
uncertainties in the measured Kow data are shown in Table I and the sources of
original data are collected in reference (35).
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Table I. Range of Reported Experimental n-Octanol/Water Partition
Coefficients (log Kow) for Some Chlorophenols, PAHs, Chlorobenzenes,

PCBs, and Other Chlorinated Hydrocarbons

Compound Range Of log KOw data

Pentachlorophenol 3.32 – 5.86

Trichloroethene 2.29 – 3.30

Naphthalene 3.01 – 4.70

Chlorobenzene 2.18 – 3.79

Hexachlorobenzene 4.13 – 7.42

2,2′-Dichlorobiphenyl 4.04 – 5.00

2,4,5,2′,4′,5′-Hexachlorobiphenyl 6.34 – 8.18

p,p′-DDT 3.98 – 6.36

Aldrin 5.52 – 7.40

The second difficulty in using the linear logKoc–logKowmodels for estimating
reliable soil sorption coefficients is the large number and wide variety of such
models in the literature, i.e. more than 100 linear log Koc–log Kow models have
been published (2–4, 14, 17). The slopes of the linear log Koc–log Kow models
range from 0.52 to 1.00 and their intercepts, from -0.78 to 1.14. An evaluation on
31 alkyl- and chloro-benzenes, heterocyclic and substituted polycyclic aromatic
hydrocarbons, chlorinated alkanes and alkenes, and chlorinated phenols for five
well known and frequently used models (5, 8, 39–41) has demonstrated that
the average range of estimated soil sorption coefficients is over 1.5 units on the
logarithmic scale, corresponding to a factor of 35 (3). The inaccurately estimated
soil sorption coefficients may result in a false risk assessment, misguided
environmental policies and finally waste of significant material and/or financial
resources. Thus, in such situations, an expert judgement and evaluations are
needed to estimate reliable log Koc values by linear log Koc–log Kow relationships.

A systematic study was performed on the linear log Koc–log Kow relationships
in order to develop a reliable and user-friendly methodology for estimating
soil sorption coefficients of a large number of commercial chemicals that will
avoid unfortunate side-effects described above (27). The basic principle of this
systematic study was to use only the evaluated and recommended log Kow (log
Pstar) values from the BioByte Masterfile database which today contains measured
data for more than 60,000 chemicals (42, 43) in order to avoid using erroneous
or questionable log Kow data. If, in a rare occasion, the evaluated and reliable
log Kow value was not available, the calculated ClogP value (44) was used but
only if all fragment values had been determined and no approximation is used in
such calculation. The result of such systematic study was a system of linear log
Koc–log Kow models with clearly defined application domains and uncertainties of
the estimated log Koc values. The system of linear log Koc–log Kow models based
on log Koc data of 471 chemicals are presented in Table II through their slopes,
intercepts, number of chemicals, correlation coefficients and standard errors.
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Table II. List of log Koc–log Kow Models Represented by Their Slopes,
Intercepts, Number of Compounds, Correlation Coefficients, and Standard

Errors

Model Slope Intercept # Comp. Corr.Coeff. St. Error

Hydrophobic 0.81 0.10 81 0.943 0.451

Nonhydrophobic 0.52 1.02 390 0.795 0.557

Agricultural chemicals 0.47 1.09 216 0.826 0.425

Phenol type chemicals 0.63 0.90 54 0.865 0.401

Alcohols & Organic acids 0.47 0.50 36 0.850 0.388

Acetanilines 0.40 1.12 21 0.719 0.339

Alcohols 0.39 0.50 13 0.876 0.397

Amides 0.33 1.25 28 0.679 0.491

Anilines 0.62 0.85 20 0.905 0.341

Carbamates 0.365 1.14 43 0.760 0.408

Dinitroanilines 0.38 1.92 20 0.909 0.242

Esters 0.49 1.05 25 0.874 0.463

Nitrobenzenes 0.77 0.55 10 0.839 0.583

Organic acids 0.60 0.32 23 0.865 0.336

Phenols & Benzonitriles 0.57 1.08 24 0.865 0.373

Phenylureas 0.49 1.05 52 0.790 0.335

Phosphates 0.49 1.17 41 0.856 0.452

Triazines 0.30 1.50 16 0.567 0.379

Triazoles 0.47 1.405 15 0.811 0.482

In order to apply the most appropriate linear log Koc–log Kow model for
estimating the soil sorption coefficient of a specific compound a flowchart is
designed (Figure 1). The process for selecting the most appropriate linear log
Koc–log Kow model has two stages. The first stage is the search for an appropriate
class-specific model using the strict rules. If such search is not successful, at the
second stage, the selection of the most appropriate model for a specific chemical
is made among more general models. Each linear log Koc–log Kow model is
defined by its chemical domain, substituents domain and Kow variable domain
(27). Thus, in order to make a reliable estimate of the soil sorption coefficient
by the system of linear log Koc–log Kow models, the characteristics of a specific
compound must be within the application domain of a selected model.
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Figure 1. The flowchart for selecting the most appropriate linear log Koc–log
Kow model.

All soil sorption data used in this systematic analysis of log Koc–log Kow
relationships have been determined for nonionic species of respective compounds.
Thus, linear log Koc–log Kow models listed in Table II are applicable only for
nonionized chemicals. Furthermore, this approach is most appropriate for sorption
systems where non-specific interactions are dominant while for compounds where
specific interactions, e.g. hydrogen bonding, are significant the estimates based
on log Koc–log Kow relationship will be less reliable. The system of linear log
Koc–log Kow models is composed of three types of models; general, sub-general
and class-specific models. General models have wide range of applicability but
relatively low accuracy while on the other hand class-specific models usually have
narrow application domains but high accuracy. The range of applicability and level
of accuracy of sub-general models is somewhere in between. Thus, there is always
a trade-off between the range of model applicability and the accuracy of estimates
and by this system of models it will be possible to make reliable and accurate
estimates for simple chemicals while reasonable estimates for complex chemicals
that have many functional groups and large sizes. In any case, as it was pointed
out in one of the recent review articles on predicting soil sorption coefficients for
organic chemicals (2), the use of linear log Koc–log Kow relationships still provides
the best return for the effort involved. Finally, the developed system of linear
log Koc–log Kow models has been incorporated in the European Union technical
guidance document for risk assessment of chemicals (45).
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Polyparameter Linear Free Energy Relationship (pp-LFER)
Models

In cases where the linear log Koc–log Kow relationships are not successful,
the poly-parametric statistical approaches may be useful. The Kamlet-Taft
poly-parametric approach is recognized as a powerful predictive QSAR tool
(46–48) and it is based on the well-known Linear Solvation Energy Relationship
concept (49, 50). More recently a more general term Linear Free Energy
Relationship (LFER) is used for such type of concepts (48). The LFER concept is a
general approach to describe solvation, partitioning or related properties in diverse
media and Kamlet and co-workers demonstrated that many types of chemical
properties depend on solute-solvent interactions (49–52). Within this approach,
each such property can be described by three types of interactions: the non-specific
dispersive interactions (cavity term), polar interactions (dipolarity/polarizability
term) and donor or acceptor type hydrogen bonding (hydrogen-bonding terms).
The poly-parameter linear free energy relationship (pp-LFER) model for partition
of a chemical between a water phase and another condensed phase, in our case
soil organic matter, was established by Abraham and co-workers (46) and has the
following general form:

The terms in capital letters E, S, A, B, and V are sorbate (chemical) descriptors
for the various types of interactions. E is excess molar refractivity which stands for
the difference in polarizability compared to an alkane of the same size and accounts
for Debye forces (dipole-induced dipole interactions) and London dispersive
forces (induced dipole-induced dipole interactions). V is normalized McGowan
volume ((cm3/mol)/100) of sorbate and accounts for nonspecific interactions (van
der Waals interactions and cavity formation). This term is proportional to the size
of molecule (sorbate) and to the Gibbs free energy necessary for cavity formation
in the respective media. S refers to the dipolarity/polarizability of the sorbate
but it predominantly accounts for electrostatic interactions controlled by stable
charge separation, i.e. dipole-dipole interactions, while only a small fraction is
related to polarizability (cross-correlation effect with E term). The remaining
two descriptors A and B stand for the overall hydrogen-bond acidity (H-donor or
electron acceptor) and the overall hydrogen-bond basicity (H-acceptor or electron
donor), respectively.

The descriptors V and E can be estimated by fragments addition (53, 54). The
descriptors S, A and B can be determined chromatographically using appropriate
stationary and mobile phases (53, 55, 56) or through appropriate regressions
of available data in other solvent-solvent systems. Experimentally determined
substance descriptors for about one thousand compounds with mostly simple
molecular structures and low molecular weights are publicly available (57–59).
However, there is a lack of descriptors for more complex compounds with
multiple functional groups. Thus, efforts have been made to develop methods
for estimating sorbate (chemical) descriptors for chemical classes that are of
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environmental concern such as modern pesticides and pharmaceuticals (60, 61).
However, it was demonstrated (19) that, while pp-LFER models outperform other
prediction methods for compounds for which experimentally determined sorbate
(chemical) descriptors are available, the partition coefficients were predicted
poorly if the sorbate descriptors had to be estimated according to the fragments
method by Platts et al. (61).

Furthermore, the E descriptor for solid compounds, i.e. the majority of
pesticides, cannot be calculated from experimental refractive indices but must
be estimated by empirical methods from molecular structure which involves
considerable uncertainty (62, 63). This problem can be by-passed by using
eq 2 in which the E descriptor is replaced by L descriptor, the logarithm of
the hexadecane/air partition constant of sorbate (chemical) at 25 °C in units of
[Lair/Lhexadecane] (64).

L can be measured for liquid and majority of solid organic chemicals (62),
except for very large and very polar molecules, for which estimated L values must
be used.

The coefficients e, s, a, b, and v in the eq 1 are parameters that depend on
the difference in sorbate (chemical) properties between water and the soil organic
matter phase. The constant c is a solvent specific free energy contribution that
depends on the volume entropy effects (65). All regression coefficients and the
constant c are determined by the linear multiple regression analysis against a
calibration set of experimentally determined soil sorption coefficients for sorbates
for which the sorbate descriptors (E or L, S, A, B, and V) must be known. If the
regression coefficients are accurately calibrated, pp-LFER models can provide
reasonable predictions (usually within a factor of 2-3) of partitioning coefficients
over a broad range of neutral organic compounds with varying polarities.

Here we will focus only on the most recent developments in this area related
to the estimation of soil sorption coefficients of organic pollutants. The first
respectable and detailed pp-LFER modeling study on soil sorption coefficients
was published nearly a decade ago (14). In this study a new pp-LFER was
developed using 356 selected log Koc values for 75 apolar, monopolar and bipolar
chemicals. The first step in this modeling effort was a critical review of a data
set of log Koc values published in peer-reviewed literature. The following criteria
were used in this critical review of Koc data: (i) the sorption isotherms were
measured at multiple solute (sorbate) concentrations and were approximately
linear (Freundlich coefficient n = 0.9-1.1), (ii) data obtained by a batch experiment
with clearly described procedures including control of losses, (iii) data obtained
for soils with organic carbon fractions lower than 0.1% were excluded from
analysis because adsorption to thermally altered carbon may dominate sorption
process and (iv) data obtained with high-clay materials (clay content above 35%)
were excluded from analysis too, particularly for phenolic compounds where the
interactions with clay may be significant (66). In addition, only organic chemicals
for which values of chemical descriptors (E, S, A, B, and V) were available in
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peer-reviewed literature were used in the statistical analysis. Finally, the data
presented in literature as log Komwere converted to log Koc assuming a conversion
factor of 1.72 g of soil OM/g of organic carbon (3). E, S, A, B, and V descriptors
were taken from Abraham and Roses (67), Abraham et al. (58), Poole and Poole
(68) and Platts et al. (61).

The final data set consists of 75 selected chemicals that can be classified in
four groups: monoaromatic hydrocarbons without halogens (10 compounds),
halogenated hydrocarbons (33 compounds–8 chlorobenzenes, 16 PCBs and 9
halogenated alkanes and alkenes), PAHs (11 compounds), and polar chemicals (21
compounds–e.g. phenols, anilines, amides and ureas). Two types of regression
were performed on the above calibration set: one using all collected data (356
data points) and another using the average value for each chemical (75 data
points). Regression based on the average log Koc values was performed to avoid
overwhelming impact of several chemical with excessive number of measured
Koc data from a single study (13), e.g. 1,2-dichlorobenzene with 73 data points
and tetrachloromethane with 70 data points. However, regression based on all
collected data provides equal weight to the entire calibration set and may better
reflect the variations due to variability in soil quality, experimental precision,
and different experimental bias between experimental groups. Consequently,
two pp-LFER models were developed in this study represented by eq 3 (with all
collected data) and eq 4 (with average values):

A similar quality of regression was observed for both pp-LFER models,
namely their correlation coefficients and average residuals are almost identical.
The most significant difference between those two pp-LFERmodels is in chemical
descriptor A (hydrogen-bond acidity) since when the average values for log Koc
were used (eq 4) its coefficient a was statistically insignificant, i.e. 0.15 ± 0.15.
However, the conclusion from this study was that it is unclear which of two
pp-LFER models is more appropriate.

The analysis of fractional contributions from the eE, sS, aA, bB, vV and c
terms has demonstrated that for all 75 chemicals the cavity term (vV) has the
strongest influence on logKoc data. The second and third largest contributors to soil
sorption data for all chemical classes were from the terms reflecting nonspecific
van der Waals interactions, i.e. eE and sS terms. Finally, for group of polar
chemicals, a significant contribution was also observed from H-acceptor and H-
donor terms, i.e. aA and bB terms. From the mechanistic point of view those
results are consistent with expectations. The dominant driving force for sorption
of chemicals from water to wet soil organic matter (SOM) is the tendency of
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solute molecules to escape from the bulk water phase. Wet SOM has weaker
electrostatic interactions than bulk water and is a weaker hydrogen-bond acid.
Consequently, polar chemicals (high S) and chemicals with significant hydrogen-
bond basicity (high B) will always prefer bulk water phase. Wet SOM is a slightly
stronger hydrogen-bond base compared to the bulk water phase but interactions
with SOM basic sites will be only significant for chemicals with very high acidity
like pentachlorophenol.

The quality and applicability of both developed pp-LFER models have been
tested on insecticide carbaryl and well-known pollutant and potential endocrine
disruptor 4-nonylphenol. The measured values of log Koc for carbaryl range from
1.80 to 2.78, the result from a recent study on 33 soils from Australia, Pakistan
and UK (69). At that time, the pp-LFER descriptors were not available for
carbaryl in a peer-reviewed literature and consequently the authors have used the
following commercial parameters E = 1.512; S = 1.68; A = 0.21; B = 0.80; V =
1.5414 distributed by Pharma Algorithms (70). Applying eqs 3 and 4 and above
set of descriptors, the estimated log Koc values for carbaryl were 2.64 and 2.55,
i.e. within the broad range of experimental log Koc data (69). The linear isotherms
were reported for sorption of 4-nonylphenol on 51 terrestrial soils and respective
log Koc values were in a broad range of 3.47–4.39 (71). The pp-LFER descriptors
were not available for 4-nonylphenol neither in the peer-reviewed literature
nor commercially. Thus, the values of E, S, A, B and V descriptors had to be
estimated. For cavity term, such estimation is accomplished using atomic volume
contributions (54) while for other descriptors the estimation can be achieved
using analogy to alkyl phenols that have fewer carbon atoms in chain. The set of
estimated values for pp-LFER descriptors was E = 0.8; S = 0.9; A = 0.55; B =
0.49; V = 2.043. Applying eqs 3 and 4 and above set of descriptors, the estimated
log Koc values for 4-nonylphenol were 4.46 and 4.13, i.e. within the broad range
of experimental log Koc data (71). Thus, it seems that developed pp-LFER models
are a reasonable choice for estimating log Koc data for chemicals not included in
the calibration set.

The developed pp-LFER models preformed reasonably well and can estimate
log Koc data within 0.6 orders of magnitude for all compounds evaluated either
nonpolar or polar. However, there are two important drawbacks for general
application of the developed models. First, the necessary chemical descriptors
are still unavailable or difficult to obtain for a large number of environmentally
relevant chemicals. Fortunately, the data-base of necessary chemical descriptors
is growing continuously and methods for their estimations are available.
Unfortunately, in many instances the quality of estimated descriptors is not
sufficient or it is difficult to judge the quality of estimated descriptors and this
may significantly increase the uncertainties of log Koc estimates by the developed
pp-LFER models. The second important drawback of the developed pp-LFER
models is that the quality of those models has not been tested on a large set of
environmentally relevant chemicals and that the applicability domain of those
models is not clear.

The pp-LFER models described above as well as models presented in an
analogous modeling study (68) have been developed for the log Koc values
obtained predominantly at high sorbate concentrations (i.e. >10% of the solubility
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limits). Such models may not be appropriate for estimating Koc values of
organic contaminants in the environment, where contaminant concentrations are
typically much lower, i.e. in the nM–μM range, since the Koc values for organic
compounds at environmentally relevant concentrations may be substantially
different from those obtained at high sorbate concentrations. Due to the lack of
a set of consistent experimental Koc data measured in an environmentally more
relevant concentration range, Endo et al. (72) have performed an extensive study
measuring sorption isotherms at environmentally relevant concentrations and
with two model sorbents (peat and lignite) for 35 selected chemicals representing
various chemical classes such as apolar aliphatic (alkanes), weakly polar aliphatic
(halogenated alkanes/alkenes), monopolar aliphatic (e.g. ethers, nitrile), bipolar
aliphatic (alcohols), non- or weakly polar aromatic (alkyl benzenes, PAHs,
thiophene, furans), monopolar aromatic (e.g. acetophenone, anisole, benzonitrile)
and bipolar aromatic (phenols) compounds.

The analysis of newly measured log Koc,low data for peat at environmentally
relevant concentrations has clearly demonstrated that such values are up to
one order of magnitude higher than literature log Koc,high values obtained
predominantly at high sorbate concentrations. It was also found that the
literature pp-LFER models (14, 68) underestimate the measured Koc values for
peat at the low concentration by up to 1 order of magnitude. The extent of
underestimation highly depends on the sorbate properties but primarily on the
sorbate dipolarity/polarizability parameter S. More specifically, the literature
pp-LFERs adequately predicted log Koc,low data of apolar and weakly polar
aliphatic sorbates but consistently underpredict by around one log unit log Koc,low
data of aromatic and some polar aliphatic sorbates. Thus, it was unambiguously
proven that pp-LFER models from references (14) and (68) should not be used
for estimating Koc data of organic contaminants in the environment.

Therefore, it was of high importance to develop pp-LFER models for
soil sorption of organic contaminants at lower, more environmentally relevant
concentrations using newly measured Koc data at environmentally relevant
concentrations (72) complemented with analogous data for 16 sorbates on peat
and 23 sorbates on lignite (73). Consequently, the final calibration sets consisted
of 51 data points for peat and 58 data points for lignite. Both calibrations sets
were regressed against values of chemical pp-LFER descriptors (72) and two
pp-LFER models were developed represented by eq 5 (peat) and eq 6 (lignite):

The differences between calculated and measured log Koc,low values for peat
were within 0.3 log units for more than 82% of compounds studied. For lignite
fitting was significantly better since almost 90% of compounds had deviations
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below 0.3 log units. These findings show that the high quality pp-LFER
models can be also developed for soil sorption of diverse chemical classes
at environmentally relevant concentrations. It should be pointed out that the
developed pp-LFER model for peat is significantly different from the literature
pp-LFERmodels (14, 68) determined at near aqueous solubility limits of sorbates.
The pp-LFER models developed for soil sorption of organic contaminants at
environmentally relevant concentrations (eqs 5 and 6) suffer from the same
deficiencies as the pp-LFER models developed for high sorbate concentrations
(eqs 3 and 4) due to the lack of reliable pp-LFER descriptors for environmentally
relevant chemicals. The quality of those models has not been tested on a large
set of environmentally relevant chemicals and the applicability domain of those
models is not clear. Predicting logKoc of compounds that are out of the application
domain can lead to large errors. Examples of such compounds for the pp-LFER
models described by eqs 5 and 6 are (i) large hydrophobic compounds (e.g.,
five-ring or larger PAHs), (ii) acids, bases, and ionic compounds, (iii) highly
polar, multifunctional compounds like pesticides and pharmaceuticals and (iv)
perfluorinated compounds.

All pp-LFER models described up to now have been calibrated for estimating
log Koc data of relatively simple chemical classes like alkanes, halogenated
alkanes/alkenes, PCBs, chlorobenzenes, PAHs, alcohols, ethers, phenols, anilines
or similar chemicals and may not be accurate in estimating log Koc data for
multifunctional or complex organic chemicals like pesticides and pharmaceuticals.
Chemicals of current environmental concern are often multifunctional and more
polar and more complex than classical pollutants such as PCBs or PAHs and
consequently there is an urgent need to develop pp-LFER model(s) that will
accurately predict log Koc data for pesticides, pharmaceuticals and similar type
of contaminants. Recently a pp-LFER model for soil/water partitioning was
calibrated with data for 79 polar and nonpolar compounds that cover a very wide
range of the relevant intermolecular interactions (74). To achieve this goal the Koc
data had to be measured by column experiments using Pahokee peat as sorbent
for majority of calibration set compounds in the nM–mM concentrations range.
The Koc data obtained by the column experiments using Pahokee peat as sorbent
correspond nicely with data previously measured by the batch experiments with
peat as sorbent at the environmentally relevant concentrations (72). Highly
complex chemicals were deliberately excluded from the calibration set since
LFER descriptors of pesticides and pharmaceuticals have a higher uncertainty
than those of more simple chemicals and for the calibration data the reliability
of the descriptors has to be high. The basic principle for selecting chemicals
in the calibration set was to achieve wide range of descriptor values that will
overlap as much as possible with the descriptor values of a large set of pesticides
and pharmaceuticals measured by Tülp et al. (63). The only exception was
the omission of chemicals with S-values higher than 2.0 to prevent significant
cross-correlation between the S-values and other size-related descriptors V and
L. The final calibration set consisted of 79 chemicals and produced two types of
pp-LFER models (74) described by eqs 7 and 8:
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The quality of the fit is very similar for both models. Nevertheless, the
significant difference between s coefficients may result in substantial difference
between estimated Koc values for chemicals whose S-descriptor is higher than 1.5.
The range of values for the LFER descriptors V, B and S of the calibration set was
larger than those of previous studies (14, 68, 72). However, the fitted coefficients
of eqs 7 and 8 are in the range of values reported in earlier pp-LFER models.
Thus, it seems that the calibration set applied in this study span the molecular
interactions space, described by the LFER descriptors, more uniformly than the
previous calibration sets. It should be noted that the perfluorinated compounds
are excluded from the application domain of the developed models.

The experimental Koc data of 47 pesticides and several pharmaceuticals or
hormones were used as an independent evaluation data set for the developed
pp-LFER models (eqs 7 and 8) to assess their applicability to complex,
environmentally relevant chemicals. Thus, the log Koc data have been estimated
for chemical from the evaluation set and compared with their measured data. The
root-mean-square error (rmse) of 0.39 log units was obtained for log Koc data
estimated by eq 8 while the rmse is much higher for values estimated by eq 7,
i.e. 0.59 log units. It is argued that the poor performance of the pp-LFER model
described by eq 7 is due to substantial uncertainty in calculated E descriptors for
a significant fraction of chemicals in the evaluation set, i.e. 11 pesticides and
pharmaceuticals. However, the pp-LFER model described by eq 8 performs very
well and can be used in estimating log Koc data for multifunctional or complex
organic chemicals like pesticides and pharmaceuticals.

The pp-LFER model described by eq 8 was additionally evaluated by
comparing its estimated values with the literature Koc data measured for Pahokee
peat sorbent for 63 polar and nonpolar chemicals. A good agreement (rmse
= 0.46) is found between the model predictions and the literature data. Only
three chemicals have more than 1 log unit difference between the experimental
and the predicted Koc values: 2-naphthol (1.16), 2,4-dichlorophenol (1.08)
and 2-octanone (1.00) and for all of them the Koc values were underestimated.
Another three chemicals also show considerable deviations: acetophenone (0.86),
benzothiophene (0.78) and phenanthrene (0.70). Again, for all three chemicals,
the measured Koc values are underestimated. Another interesting point is that
almost all listed chemicals with highly underestimated Koc values are aromatic
compounds. Thus, it is fair to conclude that the pp-LFER model described by eq
8 has a wide applicability for predicting Koc values in various soils and sediments
but that it should be used with caution in the case of aromatic compounds and
particularly for PAHs and their derivatives.
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Although, the pp-LFER model described by eq 8 has potential to correctly
estimate the Koc data for a wide range of apolar or polar chemical classes including
multifunctional or complex organic chemicals like pesticides and pharmaceuticals
there are still important drawbacks to the general applicability of developedmodel.
As for earlier pp-LFER models, the necessary chemical descriptors are still either
unavailable, difficult to obtain or have large uncertainty for a large number of
environmentally relevant chemicals. Furthermore, the applicability domain of
this “general” model is not clearly or explicitly defined. Although it is implicitly
suggested (74) that this model can be used to accurately estimate the Koc values
for any type of chemicals, this is really not proven beyond the reasonable doubt.

Another effort has been made in the same year (75) to derive a more robust
and more universally representative pp-LFER model for soil-water partitioning
by using large sets of Koc data from the literature for a more diverse set of
chemicals. Two sets of Koc data from the literature were used. The first set
consisted of pesticides, PCBs and polyaromatic hydrocarbons (PAHs) with results
for sediments and soils for 140 compounds and 740 data points. Results in this
data set were limited on Koc data determined by the batch method and studies in
which the particle concentrations were reported. The second Koc compilation, 440
compounds and data points, consisted of wider variety of chemicals with more
diverse functionality (27) but included all 140 compounds from the first data set.
The Koc data in the second data set are the averages of measured values from
the literature and no evaluation or validation has been made about the quality
of those data. The solute descriptors E, S, A, B and V for all compounds were
calculated with ADME Boxes 4.0 Absolv program provided by ACD Labs (76).
The pp-LFER models were developed for each Koc data set and respective models
are described by eqs 9 and 10.

The developed pp-LFER model (eq 10) based on the more chemically diverse
data set has significantly lower rmse of prediction and the smaller parameter
standard errors. Furthermore, in eq 9 the regression coefficients a and s are not
statistically significant. Thus, those results suggest that pp-LFER model based on
the larger and more diverse data set and described by eq 10 is more appropriate.
The dominant contributions in this model are from the molecular volume, vV,
the dipole–dipole interaction, eE, and the hydrogen bond–donating (solute) and
hydrogen bond–accepting (solvent) interaction, bB. The weak contribution by the
hydrogen bond–accepting capability (aA term) is the consequence of water and
organic carbon having a very similar capability of accepting hydrogen bond. It
was suggested by the authors that the residual analysis for this pp-LFER model
shows that there is no significant bias relative to the solute parameters except the
overestimation for log Koc values below 1.5. However, the plot of residuals vs.
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measured Koc data clearly shows that there is also a significant underestimation
for log Koc values above 3.0 and that there is definitively a negative trend over
the whole range of this plot.

The regression coefficients of both developed pp-LFER models have been
compared with the regression coefficients reported for other published pp-LFER
models (14, 68, 72, 74). It was found out that the coefficients from this study differ
significantly from the coefficients obtained for previous models in quantitative and
sometimes even in qualitative terms. For example, the constant terms range from
–1.04 to 0.724 while the s coefficients differ from –0.82 to 1.27. This means that
developed pp-LFER models strongly depend on the selected calibration set and
that the selection of compounds for calibration of pp-LFER model must be done
with a due care and not by brute force, i.e. taking everything that is available.
During this selection process the quality of Koc data as well as the quality and
range of solute descriptors must be taken into account. In addition, it is very
important that there is no or only aweak intercorrelation between solute descriptors
for compounds in the calibration set. Consequently, pp-LFER model described by
eq 10 has several important weaknesses, i.e. the unknown and variable quality of
logKoc data, the poor quality of calculated solute descriptors (74) and the unknown
and untested intercorrelations between solute descriptors. Thus, this model should
not be used to estimate Koc data for compounds which are outside its calibration
set like pharmaceuticals, hormones, personal care products and similar.

Recently, an additional effort was made (77) to further expand the
applicability domain of pp-LFER model described above by eq 8. To achieve
this goal a set of new Koc data has been measured for 28 non-ionized natural
toxins, such as mycotoxins or phytoestrogens, which were recently identified
as micropollutants in the environment (78). This test set of natural toxins is
also of particular methodological interest since it is composed of compounds
with a broad diversity of multifunctional groups, large molecular size and high
degree of complexity. Their sorption affinity was measured with a model sorbent
for soil organic matter, the Pahokee peat. The Koc data for 31 mycotoxins and
phytoestrogens have been determined by a dynamic HPLC-based column method
and the range of experimental log Koc data was 0.7 – 4.02 (77). Unfortunately,
the experimentally determined LFER descriptors are only available for a
single compound from the large set of studied mycotoxins and isoflavones,
i.e. zearalenone. Consequently, for a subset of mycotoxins and isoflavones
LFER descriptors have been calculated from molecular structure by the program
ABSOLV (76).

The pp-LFER model described by eq 8 was not successful in estimating
log Koc data of non-ionized natural toxins since only about 40% of values were
predicted within 1 log unit while more that 20% of predicted log Koc values
have residuals between 2-3 log units. The model was only partially successful in
estimating log Koc data of weakly sorbing mycotoxins, i.e. for such mycotoxines
low Koc values are predicted. Furthermore, for zearalenone, the only mycotoxin
for which experimental pp-LFER descriptors are available, the estimated low
Koc (3.61) is very close to measured value of 3.42. Thus, it may be argued,
that the suitability of the pp-LFER approach for mycotoxins cannot be properly
assessed until experimental pp-LFER descriptors become available. However,
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this also means that the ABSOLV parameters must be used with caution. These
conclusions are also supported by the multiple linear regression of measured log
Koc values (20 toxins) with the five ABSOLV parameters which gave a poor fit (R2

= 0.2) and a high rmse (0.91 log units). The log Koc data of non-ionized natural
toxins have been also estimated by several literature models like EPISuite’s
KOCWIN, SPARC and COSMOtherm (quantum-chemical based software).
None of them was able to adequately predict absolute Koc values either or to
account for the trends observed for Koc data among the various tested mycotoxins.
Hence, measuring Koc data for natural toxins by a dynamic HPLC-based column
method seems to be the only reasonable solution for now.

The major advantage of pp-LFER approach is that it has solid and sound
thermodynamic and mechanistic grounds. Furthermore, pp-LFER models
developed for uniformlymeasuredKoc data have been extensively and successfully
tested on broad range of various chemical classes including multifunctional
and complex chemicals like pesticides and pharmaceuticals. However, there
are still measured soil sorption data for hundreds of chemicals which have not
been used for the evaluation of those pp-LFER models. Parenthetically, this
large set of published Koc data still awaits a complete and careful evaluation. At
present, the lack of experimental pp-LFER descriptors is a serious limitation for
the general applicability of pp-LFER models. The second important drawback
of the developed pp-LFER models is that their applicability domains are not
well defined. Caution is advised whenever a pp-LFER model is used outside its
application domain as it was nicely demonstrated in the case of natural toxins
(77).

Models for Ionized Compounds

As it was clearly stated in the previous sections, all linear log Koc–log Kow and
pp-LFER models for estimating soil sorption coefficients (Koc) described up to
now are strictly applicable for non-ionized compounds. In an early study Bintein
and Devillers (79) have suggested a single model for estimating the soils-water
distribution coefficient (Kd) of non-ionized as well as ionized chemicals. In that
quantitative model Kow and ionization constants (pKa) are molecular descriptors
while pH and foc(the fraction of organic carbon) describe sorbent characteristics.
The final version of that model is described by eq 11

where CFa and CFb are the correction factors that quantify the variation of
dissociated acids or bases in the system and can be calculated by the simple
expressions based on the chemical ionization constant and on the sorbent surface
pH. Although, the correlation coefficient of this model was quite high, its major
deficiency is that electrolytes were poorly represented in the calibration set as
well as in test set (<15%). Consequently, the ability of this model in estimating
the soils-water distribution coefficient (Kd) of ionized chemicals is questionable.
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Recently, a significant effort has been made by two groups (80–84) to
develop reliable model(s) for estimating the soil sorption coefficients (Koc) of
organic acids, bases and amphoters from their Kow and pKa data. The first study
was published by Kah and Brown (80) where the sorption of six acidic (dicamba,
metsulfuron-methyl, fluazifop-P, 2,4-D, flupyrsulfuron-methyl and fluroxypyr)
and four basic (metribuzin, terbutryn, pirimicarb and fenpropimorph) pesticides
was measured in nine contrasting arable soils. The measured distribution
coefficients (log Kd) were then submitted to statistical analyses against a wide
range of soil and pesticide properties to identify the best combination of properties
that describe the variation in sorption. It was observed that sorption of ionizable
pesticides tends to be stronger in soils with lower pH and containing more
organic carbon (OC). The influence of these two parameters was less apparent
for basic compounds and indicated that different models are required for acids
and bases. Consequently, the data set was split between acids and bases. When
all descriptors were considered together, log D (lipophilicity corrected for pH)
and OC were selected as the best predictors for the sorption of acids. However, in
order to account for majority of variability in the acids sorption data an additional
molecular descriptor (GATS7v), related to the van der Waals volume of pesticide,
had to be incorporated in the regression model:

GATS7v is Geary autocorrelation–lag7 weighted by atomic van der Waals
volumes. This regression model was then tested by predicting the distribution
coefficients (log Kd) on an independent dataset consisting of seven acidic
pesticides. Their Kd data were measured on 36 temperate soils sampled in
France and the United Kingdom and the test set included three pesticides from
the calibration set (2,4-D, metsulfuron-methyl and dicamba) and four additional
phenoxy acids (MCPA, 2,4,5-T, dichlorprop and mecoporop-P). Model described
by eq 12 has potential to correctly predict the log Kd data of acidic pesticides
since the correlation between measured and predicted values of pesticides from
the test set was quite significant, i.e. R2 = 0.721.

The behavior of basic pesticides was more complex since there are various
mechanisms which can retain basic compounds in the soil phase. Namely,
basic pesticides can bind either to the soil organic matter or to the clay through
several different mechanisms. The relative importance of individual mechanism
depends on various parameters such as the type and amount of soil constituents,
the molecular properties of pesticide and the chemical environment of the soil
phase. A large part of the variation in soil sorption for individual pesticide could
be explained by the variation in the soil cationic exchange capacity and pH.
However, the differences in behavior between bases could not be deduced from
pesticide molecular properties alone. Relatively little experimental evidence was
available for basic pesticides and, consequently, the balance between various
processes is not fully understood.
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Shortly after above study, the first extensive modeling study on soil sorption
of ionizable organic compounds was performed by Franco and Trapp (81). A data
set of 93 acids, 65 bases, and six amphoters with their Koc data was collected from
the literature and the averaged values from a representative variety of soils were
used in statistical modeling. Their log Kow and pKa values were calculated by the
ACD/Labs® software (85) and consequently the Henderson-Hasselbalch equation
was used to calculate the extent of dissociation for those chemicals, i.e. neutral Φn,
ionic Φion, anionic Φ- and cationic Φ+ fractions. Only chemicals in the pKa range
2-12 were selected for the calibration set since outside this range chemicals are
in neutral form while the dissociation constants are calculated at 25°C and zero
ionic strength. Three calibration sets of 62 acids, 43 bases and six amphoters were
used for fitting soil sorption coefficients (log Koc) to log Kow (log Pn) and pKa data.
Consequently, the separate regression models were developed for acids (eq 13),
bases (eq 14) and amphoters (eq 15):

where f is the ratio of chemical concentration in n-octanol and sum of
concentrations in n-octanol and water, i.e. f=Kow/(Kow+1) while rmsd is root mean
square deviation between estimated and measured data. The pHopt terms were
calculated by fitting to the experimental data of calibration sets. The developed
models are applicable for the whole pKa range of acids, bases and amphoters
and particularly useful for strong bases and amphoters since those are the first
predictive methods for such chemicals.

Randomly selected test sets of 31 acids and 22 bases were used to test the
quality of regression eqs 13 and 14, respectively, in estimating log Koc of ionic
chemicals. The developed models have been quite successful in estimating the
log Koc values of various acids (rmsd = 0.44) and bases (rmsd = 0.51) in large test
sets. The only exceptions are two bases, acridine and benzo[f]quinoline, whose
residuals are in the range 1.4–1.8 log units. Anyhow, it may be concluded that the
developed quantitativemodels are successful in calculating reliable logKoc of ionic
chemicals and that those models should be generally applicable. Furthermore,
the four parameters used in the above models, pKa and log Pn for molecules and
organic carbon and pH for the soil, all have a major impact on the sorption of
ionizable chemicals.

In the follow-up study Franco et al. (82) have tried to modify above models
(eqs 13, 14 and 15) by replacing their constant terms pHopt by a variable, i.e. a
varying pH range, and to derive models that will predict pH-dependent sorption
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for ionic chemicals. To account for pH dependence, the Henderson-Hasselbalch
equation (eq 16) for calculating the fraction of neutral species, where a is 1 for
acids and -1 for bases, was modified and the constant term pHopt is substituted
by variable (pH + δ), i.e. the bulk soil pH adjusted by a corrective factor δ. The
aim was to describe speciation at the sorbing surface as a function of the bulk soil
acidity. Consequently, Φn term in eqs 13 and 14 is now calculated by eq
17.

The soil sorption coefficients (Koc) determined at different soil pH
values were collected from the literature for 10 acids (2,3,5-trichlorophenol,
2,4,6-tetrachlorophenol, 2,3,5,6-tetrachlorophenol, nitrophenol,
pentachlorophenol, 2,4-dichlorophenoxyacetic acid, prosulfuron, monesin,
lasalocid and sulphachloropyridazine) and 12 bases (aniline, p-toluidine,
n-methylaniline, 2-methylpyridine, pyridine, quinoline, isoquinoline, quinaldine,
ametrine, prometrine, atrazine and tylosin). None of those data were used in
previous study (81). The data set included Koc values measured on several soils
of different pH and values obrained on a single soil at different pH. The reported
pH data correspond to the soil solution pH at equilibrium, also known as bulk pH.

The model described by eq 13 correctly predicted the pH-dependent variation
of Koc data for 9 out of 10 acids. Thus, the curves are fit to the measured data, for
the δopt that minimized the rmsd for individual compound. The optimal correction
factor δopt ranged from –1.7 for pentachlorophenol to 1.4 for 2-nitrophenol and the
mean value of δoptwas –0.6. This confirms that the pHopt is, on average, somewhat
lower than the bulk soil pH. The corrected pH is the pH at the soil surface and
it depends only on the soil properties. Consequently, the modified Henderson-
Hasselbalch equation (eq 18) for calculating the neutral fraction of organic acids
in soils is

By replacing Φn term in eq 13 by expression from eq 18, a quantitative model
is derived for reliable estimation of pH-dependent Koc data of organic acids. This
regression model enables prediction of pH-dependent Koc values from chemical’s
pKa and log Pn data and the soil bulk pH. The model developed for acids was
additionally tested on a new data set of pH-specificKoc valuesmeasured in different
soils for seven organic acids: 4-methylbenzoic acid, trichlorophenoxyacetic acid,
bromoxynil, dicamba, fluroxypyr, fluazifop P and flupysulfuron-methyl. This test
set consisted of 44 Koc values and rmsd between estimated and measured log Koc
values was only 0.32. It may be concluded that the modified model performs
significantly better than the original model for organic acids (eq 13). Finally, the
applicability domain for both models seems to be 0 – 12 for pKa, –2.2 – 8.5 for Pn
and 3 – 7.7 for bulk soil pH.
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Unfortunately, it was not possible to develop the analogous modified model
for bases. For bases, the trend of pH-dependent Koc data was complex. The trend
predicted by eq 14 qualitatively agreed with the data for nine compounds but
underestimated the sorption data of five pyridines and quinolines. The regression
was also unable to correctly describe the observed trend for three weak bases.
Thus, no statistically significant adjustment of the Koc models was possible for
bases by using eq 14 and considering the variability in soil pH.

At the same time, another major study on pH dependent soil sorption
coefficients (Koc) of 32 diverse organic acids (86) has demonstrated that that the
main factor driving the sorption of the anionic species of organic acids is their
hydrophobicity. It was found out that the ratio between observed soil sorption
coefficients of neutral and anionic species of organic acids is independent of their
Kow values and this is in contrast to the postulated log linear function of Kow
by Franco et al. (81, 82). Several other studies have also concluded that anion
sorption into organic matter is very similar to those of the neutral species and
that it is governed by free energy contributions for hydrophobic sorption (87,
88). On a practical side, this means that hydrophobic organic acids (e.g. PCP or
2,4-DB), despite being present predominantly in their anionic form, are subject
to significant retardation in aquifers as well as to partial removal by sorption in
sewage treatment plants.

Other Major Efforts in Modeling Koc

In this section several thermodynamic approaches for the direct calculation
of soil sorption coefficients will be presented (89–92). In addition, a general
statistical QSAR model for estimating soil sorption coefficients will be described
due to its wide applicability domain and its extensive evaluation and validation
procedure (19).

Universal Solvation Models

The first serious attempt to directly calculate the soil sorption coefficients
by a thermodynamic approach was performed more than a decade ago (90). In
that study, the SM5.42R and SM5CR quantum mechanical universal solvation
models (93) were used to predict Koc values of organic compounds. A set of
effective solvent descriptors for the organic phase of soil has been developed for
the SM5.42R model to directly compute soil/air partitioning free energies and
consequently the partitioning of solutes between soil and air. In this procedure
the soil organic phase was treated as a continuous medium with homogeneous,
isotropic properties while in reality it is a highly heterogeneous system. By
combining this set of solvent descriptors with the solute atomic surface tension
parameters developed for water/air and organic solvent/air partitioning it is
possible to calculate the partition coefficients of any solute between soil and water.
The root-mean-square error for log Koc values calculated by SM5.42R/AM1
model for 440 compounds is 1.39 log units. Unfortunately, the systematic
analysis of the quality of calculated Koc data was not performed. Even the

104

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



scatter plot, calculated vs. measured data, is missing in this study. Without such
information it is impossible to evaluate the quality of developed models and
eventually recommend their use. Our brief analysis of about 20% of calculated
Koc data has revealed several serious problems concerning their quality. First,
there is a significant number of calculated log Koc values with deviations of
about 2 or more log units such as aldicarb sulfone (3.6 – 3.8), aldrin (1.7 –
2.0), 4-aminobenzoic acid (1.2 – 1.8), asulam (6.2 – 6.5), α–BHC (2.0 – 2.2),
β–BHC (1.9 – 2.0), γ–BHC (2.1), 3-bromophenylurea (1.7 – 2.2), sec-bumeton
(1.1 – 2.0), carbendazim (1.8 – 1.9), carbophenothion (1.6 – 2.4), α–chlordane
(2.0 – 2.1), chlorfenvinphos (1.0 – 2.0) and chlorimuron (5.2 – 5.6). Second,
in a number of cases the differences in the calculated log Koc values between
models SM5.42R/AM1 and SM5.42R/HF/MIDI! are 1 log units or more (e.g.
benz[a]anthracene, benzo[a]pyrene, bromacil, 1-butanol and chlorfenvinphos).
For the smaller set of 53 compounds used to test the robustness of parametrizations
for SM5.42R/AM1 and SM5.42R/HF/MIDI! models, about 25% of compounds
has calculated log Koc values that deviate 1.7 – 3.8 log units from the measured
data. Since there is no obvious pattern in the poorly estimated values, there is no
way to tell when the estimates by SM5.42R/AM1 or SM5.42R/HF/MIDI! models
will be reliable even within 1 log unit range. Thus, at present, it seems that there
is no practical use for those universal solvation models.

SPARC Online-Calculator

The computer program, SPARC, uses the computational algorithms
based on fundamental chemical structure theory to estimate a large number
of chemical reactivity parameters and physical properties for a wide range
of organic molecules strictly from molecular structure (89, 94–96). The
core of SPARC computational approach is a set of mechanistic perturbation
models that describe the intra/intermolecular interactions between molecules
as a function of environmental conditions. Furthermore, models have been
developed that quantify the various “mechanistic” descriptions commonly
utilized in structure–activity analysis, such as induction, resonance and field
effects. Resonance models were developed and calibrated using measured
UV/vis spectra, whereas electrostatic interaction models were developed using
the pKa values measured in water. Solvation models (i.e., dispersion, induction,
H-bonding, etc.) have been developed using various measured physical properties
data. SPARC’s physical property models can predict vapor pressure and heat
of vaporization (as a function of temperature), boiling point (as a function of
pressure), diffusion coefficient (as a function of pressure and temperature), activity
coefficient, solubility, partition coefficient and chromatographic retention time
as a function of solvent and temperature. Today, SPARC is implemented as an
online Web application (http://archemcalc.com/sparc/). It can explicitly calculate
sorbate-sorbent interactions and consequently the soil sorption coefficients by
using various empirical molecular descriptors that are derived explicitly from
molecular structure (89, 94–96). Again no experimental data are required in
such calculations and only a suitable molecular structure (or combination of
molecular structures) is needed to represent the sorbing phase. Furthermore, it
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should be pointed out that SPARC does not consider effects of the solute 3D
structure on partition coefficients, and thus it calculates the identical Koc values
for stereoisomers (e.g. HCHs).

Although, it is believed that the SPARC calculator is a reliable estimation
method for various environmentally relevant properties of any compound
(e.g. (89, 97)), there is only one extensive evaluation study for soil sorption
coefficients (98). In that study the structures of 15 different humic or fulvic
acids (99) have been used to mimic the structure of sorbing phase and the
SPARC method was used to calculate the Koc values of 438 compounds on
each model sorbent. Calculations could not be performed for azoxybenzene and
3-chloro-4-methoxyaniline which contain functional groups not supported by
SPARC. The root-mean-square error for SPARC calculated log Koc values range
from 1.05 to 1.96. There is a general trend for SPARC to overestimate the log
Koc values irrespectively of the model sorbent used. The range of SPARC log
Koc calculated values for individual chemical (0.75–6.13) is unreasonably high
compared with the measured variability. Even for the moderately hydrophobic
chemicals, i.e. log Koc 1–4, the spread of calculated values is about 4 log units and
strongly depends on the selected model of sorbent. Unfortunately, the systematic
analysis, on the class by class bases, of the quality of SPARC calculated log
Koc data was not performed and, consequently, there is no information in which
case the calculated log Koc values by SPARC will be reliable and in which case
the SPARC should not be used to calculate log Koc data. Such analysis must be
performed before the SPARC calculator can be recommended for either general
or specific use in estimating log Koc data.

Recently, the SPARC online-calculator was also evaluated (77) on calculating
the soil sorption coefficients for a set of 28 non-ionized natural toxins, such as
mycotoxins or phytoestrogens, which were recently identified as micropollutants
in the environment (78). This set of natural toxins is also ofmethodological interest
since it is composed of compounds with a broad diversity of multifunctional
groups, large molecular size and high degree of complexity. Due to the time and
hardware constrains, SPARC calculations were limited to the smallest sorbent
models, and Koc values were therefore calculated for the models representing
leonardite, two terrestrial humic acids and three aquatic humic acids. To assess
the influence of sorbent structure, the Koc values were calculated for a set of eight
“simple” nonpolar and polar neutral toxins. The log Koc range for the eight simple
compounds on the six different sorbent models is from 0.5 to 2.1. Not only is
the log Koc range for mycotoxins among the different sorbent models relatively
wide, the different affinities between two sorbent models are not necessarily
following the same trend. The log Koc values for all neutral toxins were only
calculated for the leonardite and for all compounds predicted sorption affinities
were far above the experimental values. Notably, the non-retaining compounds
were predicted among the values with strongest affinities. Clearly, the present
version of SPARC online-calculator is not suitable for calculating the Koc values
of non-ionized natural toxins, i.e. compounds with large molecular size and high
degree of complexity. It should be noted that none of the other models/methods,
i.e. EPIsuite’s KOCWIN, COSMOtherm and pp-LFER, were successful in
estimating the Koc values for this set of highly complex organic compounds.
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COSMO-RS and COSMOtherm Approaches

Commercial software COSMOtherm calculates partition coefficients between
desired phases based on the quantum chemical and statistical thermodynamic
calculations (91, 92). COSMO-RS and COSMOtherm approaches combine
quantum theory, dielectric continuum models, the concept of surface interactions
and statistical thermodynamics (100). Here a liquid system is considered to be
an ensemble of molecules of different type, including solvent and solute. For
solvent and solute molecule, a density functional calculation with the dielectric
continuum solvation model COSMO (101) is performed to get the total energy
and the polarization charge COSMO density that the dielectric continuum
produces on the molecular surface. For an efficient statistical thermodynamics
calculation, the solvent is considered to be an ensemble of pair-wise and
interacting molecular surfaces and new and efficient statistical thermodynamics
procedure is developed to calculate the chemical potentials of compounds in
the solvent (91). The only information needed as input for calculating the soil
sorption coefficients is the molecular structure of the solute and solvent while the
natural organic matter, i.e. the sorption phase, is treated as an undefined phase
(91). The only input needed by COSMOtherm software is a computationally
cheap quantum-chemical COSMO-calculation of the regarded molecules. The
only other input needed is a small set of parameters which depend only on the
quantum-chemical method. At present parametrizations are available for the
quantum-chemical/density functional program packages DMOL3 and Turbomole,
while for the semi-empirical program MOPAC and for the quantum-chemical
program packages ORCA and GAMESS-US parametrizations are in preparation.

The first evaluation of this thermodynamical approach for calculating soil
sorption coefficients was performed by its authors about a decade ago (91). In that
study the sorbent phase, i.e. soil, is treated as a pseudo-liquid. The geometries of
440 compounds have been optimized by the semiempirical AM1/COSMO (101)
method using the MOPAC2000 program (102). For the optimized geometries
the COSMO polarization charge densities on the molecular surfaces have been
computed on the density functional level with the COSMO extension of the
Turbomole program package (103, 104) with the split-valence polarization
basis set. Finally, the corresponding σ moments have been calculated from the
polarization charge densities using the COSMOtherm program (92) and the
multilinear regression of five calculated σ moments (M0, M2, M3, Macc and Mdon)
vs. the experimental log Koc data for a training set of 387 compounds yielded the
following model:

On the second stage derived model described by eq 19 was evaluated on an
independent test set of 53 compounds. In general the quality of calculated log
Koc data was similar for the training set and for the test set, i.e. rmse was 0.72
for the test set. Furthermore, the systematic analysis of COSMOtherm calculated
log Koc data has shown that some chemical classes have systematic deviations.
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For example, the polycyclic aromatic hydrocarbons (18 compounds) and their aza-
derivatives (10 compounds) are systematically underestimated and for themajority
of compounds the deviations are in the 1–2 log units range. On the other hand, the
calculated log Koc data for simple alcohols are systematically overestimated by
approximately 0.8 log units. Finally, for 35 phosphates in the dataset the calculated
soil sorption coefficients are significantly overestimated, in some cases up to 2 log
units, e.g. phosalone. Thus, it is fair to conclude that the above model described
by eq 19 in general gives reasonable estimates for logKoc data but that it should not
be used to estimate soil sorption coefficients of phosphates while a caution should
be exercised in applying this model to alcohols, polycyclic aromatic hydrocarbons
and their aza-derivatives.

Recently, COSMO-SAC (Conductor-like Screening Model–Segment
Activity Coefficient) (105) model, a variant of the COSMO-RS model developed
by Klamt and colleagues (91, 100), has been evaluated on the same set of log Koc
data for 440 organic compounds (98). In that study the structures of 16 different
humic or fulvic acids (99) have been used to mimic the structure of sorbing
phase and the soil organic matter is modeled as an organic solvent composed
of humic or fulvic acid molecules. The only other input information needed
for COSMO-SAC model to calculate log Koc data is the molecular structures
of water and that of the solutes. The COSMO-SAC model uses the density
functional QM methods combined with the dielectric continuum solvation model
COSMO (101) to calculate the energy of each solute or solvent molecule and
the charge density on its surface. Methods based on statistical thermodynamics
are then applied using the surface-charge distributions on the molecules to
predict the activity coefficients for solutes in a given solvent. The soil sorption
coefficients are than calculated as the ratio of the activity coefficients in the two
phases. Thus, in this approach there is no fitting procedure to the experimental
data as in the model described by eq 19. The log Koc values were calculated
by the COSMO-SAC model for a set of 440 diverse, environmentally relevant
chemicals. The calculated log Koc data, using 19 diverse models for organic
matter phase, agree generally well with the experimental data since rmse is
0.84–1.08. That is, the COSMO-SAC method can predict log Koc values for a
diverse set of compounds within an order of magnitude without adhering to any
calibration of the model by experimental Koc data. For 76% of the compounds the
log Koc data are predicted within 1 log unit of the measured values and only for
eight compounds predictions deviated from the measured log Koc by more than 2
log units (amitrole, asulam, 3,5-dinitrobenzamide, tricyclazol, benzo[f]quinoline,
urea, thiabendazole, 7H-dibenzo[c,g]carbazole). Thus, if the precision of 1 log
unit for estimated log Koc data is acceptable, the COSMO-SAC model may be a
method of choice.

The quality of quantum-chemical COSMOtherm software was also evaluated
recently (77) by calculating soil sorption coefficients for a set of 28 non-ionized
natural toxins, such as mycotoxins or phytoestrogens, recently identified
as micropollutants in the environment (78). Those natural toxins are also
of methodological interest due to their significant size and high functional
complexity. Due to the time and hardware limitations, COSMOtherm calculations
have been made only for the smallest sorbent natural organic matter (NOM)
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model and log Koc values were calculated only for the model representing
Leonardite humic acid. It should be also noted that the COSMOtherm values
were not calibrated to a set of known sorption coefficients, but are solely
based on statistical-thermodynamics using quantum-chemical properties. The
COSMOtherm predicted log Koc values for 28 non-ionized natural toxins are
in the same range as experimental values, though the scatter with experimental
data is significant. For 12 out of 20 neutral mycotoxins the predicted Koc
values are within a factor 10 of the measured data. While aflatoxins and most
alternaria toxins were accurately predicted, i.e. within 0.5 log units, alternariol
methylether, the zearalenol isomers and the trichothecenes were all estimated to
have a significantly stronger sorption than observed. However, only half of all
weakly sorbing mycotoxins were also among the lowest predicted log Koc values.
The linear fit of data for predicted log Koc vs. experimental log Koc values with
a fixed slope of one resulted in a regression with rmse of 1.03. This result is
comparable to the findings of previous extensive evaluation study (98) in which
COSMO-SAC approach was applied to calculate the Koc values for 440 neutral
compounds spanning 6 orders of magnitude and for several NOM models. It
should be also noted that all other models/methods, i.e. EPIsuite’s KOCWIN,
SPARC and pp-LFER, were far less successful in estimating the Koc data for the
set of natural toxins, i.e. highly complex organic compounds. At present, it seems
that COSMOtherm or COSMO-SAC is the only method of choice for estimating
the Koc data of highly complex organic compounds but only if the precision of 1
log unit for estimated log Koc data is acceptable.

The General Statistical QSAR Model

A new model to estimate the soil-water partition coefficient of non-ionic
organic compounds normalized to soil organic carbon, Koc, from the
two-dimensional molecular structure has been developed recently (19). This
general statistical QSAR model is unique since all literature soil/Swater partition
coefficients available for organic compounds have been used in its development,
testing and/or evaluation as well as due to its extensive evaluation procedure.
Literature data of log Koc for 571 organic chemicals were collected and fitted
to the large set of parameters restricted to 2D structural information. The final
multilinear model for predicting log Koc contains three continuous and size related
variables Pi (molecular weight MW, bond connectivity ε and molecular E-state),
21 fragment correction factors Fj, four structural indicator variables Ik, and one
regression constant and is described by eq 20:

The predictive capacity of this general statistical model is evaluated through
cross-validation (10 runs, each leaving out 10% of the compounds), permutation
(12 runs with varying degrees of target value scrambling (106)) and external
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prediction with three test sets. For each quality test the predictive squared
correlation coefficient q2 and its associated standard error (se) and bias are
reported. First, the cross-validation was performed and the resultant statistics
are q2 = 0.830, se = 0.503, and bias = -0.002, which is similar to the initial
prediction set statistics (q2 = 0.834, se = 0.512). Second, a permutation test
was performed with varying degrees of scrambling ranging from about 12.5%
up to 100% permutation. The results show that by increasing permutation the
calibration and prediction performances decrease systematically up to near 100%
permutation and scrambling q2 becomes negative. Moreover, the difference
between calibration and prediction increases with increased scrambling. Thus,
both statistical tests indicate the high statistical quality of developed model.

Three mostly external data sets were used for testing the predictive
performance of this model. The first external set consisted of 41 compounds
from study by Nguyen et al. (14) and none was included in the calibration
set. Results for the new model were slightly better than for the calibration set
or leave-10%-out cross-validation statistics, i.e. q2 = 0.934 and se = 0.379.
The second external test set comprised data for 48 nonpolar or weakly polar
monofunctional compounds (35) that have not been used in development of
present model. For these relatively simple and typically hydrophobic compounds,
the developed model is more accurate since standard error is significantly reduced
(se = 0.307) if compared with the calibration set results. The third test set (107) is
only partially external since 63 of 93 compounds have been used in the calibration
set but their reported values are quite different. As expected the standard error
for this test set is significantly higher (se = 0.613) if compared with the results
obtained for calibration set. It is fair to conclude, based on the results of extensive
evaluation procedure, that the general statistical model has significant predictive
capabilities and that its application domain is very broad.

However, there are still some potential drawbacks of this general statistical
model which have not been rationalized yet. First, all three continuous and size
related variables Pi (molecular weight MW, bond connectivity ε and molecular
E-state) are highly inter-correlated, i.e. ε vs. MW (r2 = 0.72), E-state vs. MW (r2
= 0.67) and E-state vs. ε (r2 = 0.73). This is clearly an undesirable property for
the independent variables in a multilinear model. However, it is not clear when
and how will such statistical weakness affect the quality of predicted soil sorption
coefficients. Furthermore, there are several significant outliers in the calibration
set. The largest outlier is 2,3,7,8-tetrachlorodibenzodioxin (TCDD) whose
experimental log Koc (6.50) is underestimated by 1.88 log units. Another major
outlier is benzo(ghi)perylene whose reported log Koc (4.61) is overestimated by
1.76 log units. Two other outliers hexabromobiphenyl and 2,6-dichlorobenzamide
are also overestimated by 1.50 and 1.47 log units, respectively. Thus, it seems
that developed model may have a problem in predicting log Koc data for some
large PAHs or halogenated aromatics. This is particularly disturbing since simple
models based on log Kow (5, 27) or the first-order molecular connectivity index
(108–110) are more accurate in predicting the soil sorption coefficients for those
outliers and such type of chemicals (8, 17, 27, 35, 111).
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Koc Modeling Summary and Perspectives

This critical analysis of recent developments in modeling soil sorption
coefficients (Koc) has shown that there are reliable QSAR models for every
taste, i.e. for log Kow fans, for thermodynamics enthusiasts and for statistics
aficionados. The simplest, oldest and still the most widely used methods to
predict Koc values of organic compounds are well established linear correlations
between log Koc and log Kow. Today, the most reliable model from this class is
the system of QSAR models (27) that is incorporated into the European Union
technical guidance document for risk assessment of chemicals (45). The major
prerequisite for reliable estimates is the use of measured and evaluated Kow data.
The BioByte Masterfile database now contains suchKow data for more than 60,000
chemicals (42, 43), a number that is continuously increasing. A recent study on
the use of calculated Kow values in modeling soil sorption coefficients (112) has
stressed once more the well-known problem that calculated Kow values introduce
additional and significant uncertainty in estimating the Koc data (3, 35). Namely,
depending on the model, i.e. algorithm, the estimated Kow values regularly vary
by 1 log unit and in some cases even 2 log units or more, e.g. triallate (2.17),
aldrin (2.6), dieldrin (2.44), endosulfan (3.5), disulfoton (2.52), ethion (4.44),
ethoprophos (2.5), fonofos (2.4), malathion (2.2), phorate (2.5), phosalone (2.7),
terbufos (2.9), tricyclazole (2.0), leptophos (2.6), methidathion (2.7), piperophos
(2.6), etc. Consequently, the large variability in calculated Kow data translates
directly into the large uncertainties in soil sorption coefficients estimated by linear
log Koc–log Kow models. Thus, whenever possible, the calculated Kow data should
be avoided for calculating the soil sorption coefficients. Unfortunately, the system
of linear log Koc–log Kow models (27) has not yet been evaluated on the emerging
pollutants like pharmaceuticals, primarily antibiotics, and personal care products
(PCPs). Therefore, one of primary objectives for this research area is to evaluate
the quality of estimates by this system of linear log Koc–log Kow models for
pharmaceuticals and personal care products and, if necessary, extend the system
of linear models to cover these two important classes of environmental pollutants.

The major advances in developing pp-LFER models for estimating soil
sorption coefficients have been made during the last 10 years. As pointed out
earlier, the most appealing feature of pp-LFER approach seems to be its solid and
sound thermodynamic and mechanistic grounds. An additional attribute for the
majority of the developed pp-LFER models is the use of uniformly measured Koc
data for their calibration and successful evaluation on various chemical classes.
However, despite such a careful stepwise procedure, recent comparative analysis
(75) has demonstrated that the regression coefficients of published pp-LFER
models differ significantly and for the constant term range from –1.04 to 0.724
while for the s coefficient range from –0.82 to 1.27. This means that the developed
pp-LFER models strongly depend on the selected calibration data set and this
should not be the case for models with solid and sound thermodynamic and
mechanistic grounds. Therefore, the selection of compounds for calibration of
pp-LFER model must be done carefully, particularly considering the quality and
reliability of their relevant experimental data. Besides using only the high quality
Koc data for calibration, the quality and range of solute descriptors must be also

111

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



evaluated. At present, the lack of experimental pp-LFER descriptors and the poor
quality of calculated pp-LFER descriptors for a large number of environmentally
relevant chemicals are the major obstacles for developing generally applicable
pp-LFER model. Another major drawback in developing the general pp-LFER
model for soil sorption is the potential inter-correlation between solute descriptors
for the calibration set chemicals which has not been evaluated in number of
developed models. Therefore, the primary future objective for this research area
should be to evaluate the quality of experimental Koc values since a large set of
published Koc data still awaits complete and careful evaluation. Finally, it should
be also considered that the “one size fits all” assumption, i.e. one pp-LFER model
for all chemicals, may not work for soil sorption coefficients.

As pp-LFER models, the SPARC online-calculator and COSMOmodules are
also based on thermodynamic and mechanistic grounds. Nevertheless, those two
approaches are much less successful in estimating the soil sorption coefficients.
Two evaluation studies (77, 98) have demonstrated that the root-mean-square
errors for SPARC calculated log Koc values range from 1.05 to 1.96 and that
there is a general trend to overestimate the log Koc values. Thus, if the precision
of 1 log unit or more is acceptable, the SPARC online-calculator may be an
acceptable method for estimated logKoc data. An analogous situation also pertains
to the Koc estimates produced by various COSMO modules. The systematic
analysis of COSMOtherm–calculated log Koc values (91) has shown that the
polycyclic aromatic hydrocarbons and their aza-derivatives are systematically
underestimated by 1–2 log units while the simple alcohols are systematically
overestimated by about 0.8 log units. Furthermore, phosphates were also
significantly overestimated, in a number of cases by up to 2 log units. An
extensive evaluation study of COSMO-SAC module (98) has shown that about
75% of compounds have calculated log Koc values within 1 log unit of the
measured values. However, for more than 100 chemicals, predictions deviate from
the measured log Koc values by more than 1 log unit and the root-mean-square
error is close to 1. The COSMOtherm had a similar score in estimating log Koc
values for 28 non-ionized natural toxins (77). Thus, if the precision of 1 log unit
for estimated log Koc data is acceptable, the COSMO modules may also be a
reasonable choice but not for phosphates.

The main advantage of the general statistical QSAR model (19) is its wide
applicability domain since all up to date literature soil-water partition coefficients
available for organic compounds have been used in its development, testing
and/or evaluation. However, due to the statistical nature of the QSAR model,
it should not be used outside its applicability domain. Namely, outside the
applicability domain, each estimated log Koc value can be either reasonable or
wrong by orders of magnitude and there is no way to know which will be the
case for any specific chemical. Thus, the application of statistical QSAR models
outside their applicability domains is like flipping a coin and is best characterized
by the famous movie quote “Do I (you) feel lucky?”. Furthermore, as pointed out
earlier, all three size related variables (molecular weight, bond connectivity and
molecular E-state) are highly inter-correlated and it is not clear when and how
will this affect the quality of estimated soil sorption coefficients for chemicals that
are within the applicability domain. This may be the reason why there are several
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significant outliers even in its calibration set, i.e. 2,3,7,8-tetrachlorodibenzodioxin
(TCDD), benzo(ghi)perylene, hexabromobiphenyl and 2,6-dichlorobenzamide.
Another disadvantage of the general statistical QSAR model is that it was not
evaluated on the emerging pollutants like pharmaceuticals, personal care products
and similar highly complex chemicals.

Pharmaceuticals and personal care products (PPCPs) are emerging as a new
class of global pollutants. Thus, it will be highly desirable to have a reliable
QSAR model for estimating their soil sorption coefficients. Unfortunately, only
a limited effort has been made either to develop the specific QSAR models for
PPCPs or to evaluate the quality and/or reliability of existing QSAR models for
estimating the soil sorption coefficients of PPCPs. The experimental Koc data of
several pharmaceuticals and hormones were compared with those estimated by
the two pp-LFER models (eqs 7 and 8) to assess their applicability to complex,
environmentally relevant chemicals. A root-mean-square error of about 0.4 log
units was obtained for log Koc data estimated by eq 8. Thus, it seems that this
pp-LFER model performs very well and may be used for estimating log Koc data
of hormones and pharmaceuticals. The prospective candidates for estimating the
log Koc data of PPCPs are also the models for ionized compounds (eqs 13–15),
since PPCPs frequently comprise several easily ionizable functional groups.
Furthermore, a number of pharmaceuticals, primarily antibiotics, have been used
in the calibration sets for those models and the average error of their Koc estimates
was 0.36 log units. Thus, it seems that the models for ionized compounds are also
a reasonable choice for estimating log Koc data of pharmaceuticals.

Thus, to summarize, the two main objectives for this research area are (i) to
evaluate the quality of experimental Koc values since a large fraction of published
Koc data still awaits careful evaluation and, consequently, to derive the standard
data set(s) for evaluating and/or testing the quality of available and future QSAR
models and (ii) to evaluate the available QSAR models in estimating the soil
sorption coefficients of emerging pollutants like pharmaceuticals, personal care
products or similar highly complex chemicals.
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Degradation of crop protection products is often described by
first-order kinetics. Surface and ground water models currently
used by regulatory agencies to regulate these products require
a first order degradation rate constant. However, single first
order kinetics may not appropriately describe the degradation
behavior over an experimental period. In these cases, the use
of non-first order kinetics can be useful in fitting degradation
data to determine rate constants for exposure models. Different
kinetics analysis procedures can result in vastly different
degradation rates for exposure modeling input, leading to very
different predictions of exposure levels. Regulatory agencies
have developed guidance to standardize the analysis procedure
to support agrochemical registrations. This paper presents a
comparison of kinetics analysis procedures between a guidance
used by European Union and a guidance used by USA and
Canada, and an evaluation of the two approaches using several
data sets.
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Introduction

Environmental exposure assessment depends on environmental fate
properties of an agrochemical, such as degradation and sorption behaviors.
Current water exposure models, including surface and ground water models,
often describe degradation by first order kinetics. However in many cases
degradation behavior of a chemical in field or laboratory is better described by
non-first order kinetics. Therefore, the choice to derive an appropriate first-order
degradation half-life from first or non-first order data is very critical to exposure
and risk assessment. Different kinetics analysis procedures can result in very
different degradation rate for exposure modeling input. A number of factors could
contribute to this uncertainty. Examples are kinetics model selection, goodness
of fit criteria, statistical approach used for parameter optimization, and expert
assumptions and judgments.

Pesticide regulatory agencies have published guidance documents to
standardize kinetics analysis approaches. The FOCUS group in Europe (the
FOrum for Co-ordination of pesticide fate models and their Use) developed a
kinetics guidance document in 2006, and the approach defined in this document
is used for estimating degradation kinetics from environmental fate studies
of agrochemicals in EU (European Union) registration (EU FOCUS guidance
hereafter) (1). For the similar purpose, a NAFTA (North American Free Trade
Agreement) kinetics guidance document was also developed in 2011, and is used
by US EPA (US Environmental Protection Agency) and Canada PMRA (Pest
Management Regulatory Agency) for registration evaluations (NAFTA guidance
hereafter) (2). The purpose of this paper is to 1) compare kinetics procedures
used by the EU FOCUS guidance and NAFTA guidance; 2) evaluate the two
kinetics analysis approaches using several common data sets by deriving and
comparing kinetic endpoints (degradation half-life) according to the respective
guidance. This paper focuses on the recently released NAFTA guidance, because
the FOCUS guidance has been used since 2006.

Materials and Methods

The EU FOCUS guidance has proposed approaches for calculating
degradation kinetics for both parent and metabolites for field and laboratory
degradation studies. This includes DT50 and DT90 values for triggering additional
studies and degradation rates for use in models for estimating environmental
exposure. The approaches defined in the NAFTA guidance are to estimate kinetic
endpoints for the use in exposure models, not for triggering higher tier testing, as
this is not part of the NAFTA registration review process. In addition, the NAFTA
guidance only applies to parent substance, a guidance document to estimate
metabolite degradation kinetics is not yet available in US and Canada. Therefore,
the scope of this paper is limited to evaluating the kinetics analysis approaches
for use in water exposure models for parent substances.
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Kinetics Models

Degradation of organic compounds in soil and water is often described
by first order kinetics. However, single first order kinetics (SFO) may not
appropriately describe the degradation behavior over an experimental period
as a compound may undergo strong binding, or other confounded reactions in
environmental media. In these cases, the use of other kinetic models including
FOMC (First Order Multi-Compartment), IORE (Indeterminate Order Rate
Equation, mathematically equivalent to FOMC), DFOP (Double First Order in
Parallel), and HS (Hockey- Stick) can be useful in fitting degradation data to
determine kinetic endpoints such as DT50 and DT90, from which a degradation
rate to be used in exposure assessments can be estimated. The kinetic models
are presented as following in the form of differential equations. The parameter
optimization requires solving these equations by integration.

Single First-Order (SFO) is used by both the EU FOCUS guidance and the
NAFTA guidance. The SFO kinetics essentially assumes that degradation in soil is
a homogeneous process (i.e., uniform rate in all phases of the bulk porous system).
The reaction equation for the SFO degradation kinetics may be written as

where M is the amount of the compound considered, t is time, and k is the rate
constant. Half-life (DT50) and DT90 values are calculated from a SFO rate constant
k as DT50 = ln(2) / k and DT90 = ln(10) / k, respectively.

First-Order Multiple-Compartment (FOMC) is used by the EU FOCUS
guidance. This model was first proposed by Gustafson and Holden (3), which
assumes that there is a continuous distribution of first-order reaction rate constants
in the hererogeneous soil porous media. Further assuming a gamma probability
distribution function (γ-pdf) for the rate constant k, the corresponding reaction
equation for the overall population of all first-order degradation rates may be
written as

where M is the amount of the compound considered, t is time, and α and β are
coefficients of the γ-pdf of the first order rate constant k. The FOMC model
contains two kinetic parameters and is suitable to describe bi-phasic degradation
behavior. DT50 and DT90 values can be calculated using the following equation:
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Double-First-Order in Parallel (DFOP) is used by both the EU FOCUS
guidance and the NAFTA guidance. This model assumes that there are two
distinct SFO compartments operating in parallel, each with a specific relative size
g and 1-g, and degradation rate constants k1 and k2, respectively. This model can
be written as

where M is the amount of the compound considered and t is time. The DFOP
model contains three kinetic parameters and is suitable to describe bi-phasic
degradation behavior. DT50 and DT90 values can only be estimated by using an
iterative procedure.

Hockey-Stick (HS) is another kinetics model used by the EU FOCUS
guidance. This model assumes two sequential first-order degradation rates that
change from k1 to k2 at a certain breakpoint tb. The corresponding reaction
equation may be written as

DT50 and DT90 values can be calculated using the following equation:

Indeterminate Order Rate Equation (IORE) is used by the NAFTA guidance.
The degradation rate equation is generalized to allow fractional exponent (or
reaction order). Although there is no obvious physical reason why degradation
may possess a fractional reaction order, the IORE model can be parameterized to
be mathematically equivalent to the FOMC model described in the EU FOCUS
guidance. The IORE model is defined by:
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where is degradation rate, and theN parameter determines how fast the degradation
rate declines with decreasing concentration and is an indicator of how far the data
deviate from a first order model (where N =1).

The detailed parameter conversions between IORE and FOMC can be found
in the NAFTA guidance (2).

Half-Life Selection Criteria

Figure 1 and 2 present the decision chart of model selection defined by
EU-FOCUS guidance and NAFTA guidance, respectively. The similarity of both
approaches is that they start with SFO kinetics. If an SFO fit is acceptable, then
both use the calculated SFO half-life for exposure models. When SFO kinetics
does not provide an acceptable fit to the data, a half-life for exposure models
is calculated from the results of non-first order kinetic models. The methods
used to estimate an SFO half-life from non-first order models are different in the
procedures described in the EU FOCUS guidance and NAFTA guidance.

In the EU FOCUS procedures, the half-life for modeling is calculated by
dividing the estimated DT90 from the FOMC model fit by 3.32 if the DT90 is
reached in the experimental studies. This approach assumes that the derived half-
life is based on a SFOmodel passing through a hypothetical DT90which is the same
as the DT90 of the FOMC model fit. If the DT90 is not reached in the experimental
studies, the half-life of the slow phase of the HS model or the slow compartment
of the DFOP model (whichever gives the better fit) is considered the half-life to
be used in exposure modeling.

Figure 1. A simplified flow chart for selecting a half-life of parent for exposure
models based on the EU FOCUS guidance (1).

123

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



In the NAFTA procedures, when SFO kinetics does not adequately describe
the data, two half-life values are derived. The first one is referred as a
representative half-life (tR IORE), which is calculated from the DT90 by the IORE
model fit divided by 3.32 , assuming the half-life calculated from a SFO model
that would pass through a hypothetical DT90 of the IORE fit. A tR IORE value is
calculated using the following equation:

The second half-life is determined from the slow compartment of the DFOP
model fit to the data. The shorter of the two calculated half-lives is then considered
as the half-life to be used for modeling according to the NAFTA guidance.

Figure 2. Process for selecting half-life for exposure models in the NAFTA
guidance (2).

One of the major differences between the EU FOCUS procedure and the
NAFTA procedure is the acceptability criterion for the SFO model fit. This paper
presents a brief summary of the criterion. The details of the acceptability criteria
for the SFO model fit can be found in the respective guidance documents.

The EU-FOCUS guidance uses two criteria for the goodness of fit: visual
inspection and an error criterion based on chi-square (χ2) significance test.
The visual inspection focuses on the residuals which should not be distributed
systematically but randomly, and whether the DT90 is adequately described by the
model. However in the case of systematic but sufficiently small deviations a fit is
still qualified as visually acceptable. A chi-square error percentage value of less
than 15% usually indicates an acceptable fit, but the final determination is based
on the visual inspection.
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A χ2 error percentage value is calculated from chi-square statistics. The model
that produces the smallest “err” is considered the best fit.

where, C = calculated value, O = observed value, Ō = mean of all observed
values, err = measurement error. The calculated χ2 for a specific fit may be
compared to χ2m, α (χ2tabulated) where m is degrees of freedom and α is the
probability that one may obtain the given or higher χ2 by chance.

The NAFTA guidance tests if the exponent N of a non-first order IORE
model is significantly different from 1. If the IORE exponent does not deviate
significantly from 1, the data are deemed to be adequately represented by SFO.
The procedure adopted by the NAFTA guidance is taken from Draper and Smith
(4) andMotulsky and Chistopoulus (5). The significant test procedure is described
below

where Smodel is objective function for SFO (SSFO) or IORE (SIORE), Mmodel is
modeled value, and Md is measured value

where Sc is the critical value that defines the confidence contours, p is number
of parameters, (3 in this case), α is the confidence level specified at 0.50 for this
guidance, and F(a,b,c) is F distribution with a and b degrees of freedom and level
of confidence c.

If SSFO is less than Sc, the SFOmodel is used to describe kinetics for modeling.
If not, use IORE or DFOP for modeling.

It should be noted that by setting the confidence level at α=0.5 (not at the
conventional 0.05), the NAFTAguidance for the F test is muchmore prone to reach
false positive conclusions, i.e., rejecting the simpler model SFO while accepting
the more complicated models IORE or DFOP. Unlike the FOCUS guidance, visual
inspection is not considerd in the NAFTA guidance for testing goodness of fit.
Another major difference is that, unlike the EU FOCUS procedure, the NAFTA
procedure does not perform the goodness of fit and model parameter significant
test for each model fitting.

125

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Kinetics Modeling Tools

The mathematical software tool MATLAB with a user shell “KinGUI” ((6)
and (7)) were used for kinetics characterization defined in the FOCUS guidance
document. PESTDF, developed by PMRA as a package of the statistical software
tool R ((8) and (9)), were used to implement the NAFTA kinetic approach.
ModelMaker (10) from Modelkinetix (originally developed and published by
Cherwell Scientific Ltd., UK) was used to further examine one data set.

Data Sets Evaluated

Twenty data sets from actual experimental studies were used for the
evaluations. All the data sets were taken from the EU approved registration
documents, and the half-lives for exposure models derived from these data sets
have been accepted by the EU. The data sets were divided into three classes based
on the EU FOCUS guidance: eleven data sets fit SFO, three data sets fit FOMC,
and six data sets fit DFOP. The half-lives were therefore calculated using the
corresponding acceptable kinetics models. The same data sets were characterized
using the NAFTA procedure in this paper.

Results and Discussions
The data sets used in the evaluation follow SFO degradation or bi-phasic

degradation modeled by both the EU FOCUS approach and the NAFTA approach.
However, for the same data sets, the derived degradation half-life for exposure
models can be very different, depending on the kinetics models that each approach
uses to fit the data sets. The consequence can be vastly different predictions of
exposure levels in the two regulatory systems.

Table 1 summarizes evaluations for the data sets for which the EU FOCUS
procedures have determined that the SFO kinetics were acceptable. The same data
sets fitted the SFO model based on the EU FOCUS guidance were all determined
unacceptable based on the NAFTA guidance except one data set #11 with a
very short half -life (2 days). The half-lives calculated using the non-first order
model IORE or DFOP determined by the NAFTA guidance are longer than those
calculated using the SFO model by the EU FOCUS guidance. The magnitude
of the difference is within a factor of two except data set #5 which shows more
than 4 times difference. This evaluation demonstrates that the NAFTA guidance
is more strict in accepting SFO model than the EU FOCUS guidance, therefore
tends to give longer half lives. This overestimation is expected as the NAFTA
guidance sets the model comparison F test at a very high level (α=0.5) for the
significance test. Conventionally, significance test is often specified at α=0.05 to
minimize false positive conclusions, which in this case is to minimize the errors
that the simplier model is in fact correct but rejected. Another observation is that
for the IORE fitting, N, as an exponent, is much more mathematically sensitive to
small variations in data than the k value in the IORE model (equation 7). Whether
this is a critical factor in the selection of IORE compared to SFO needs to be
further evaluated.
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Table 1. Comparison of Half-Life (in Days) Determined by EU FOCUS and
NAFTA Guidance for Data Sets Which FOCUS Procedures Determined

That SFO Kinetics Were Acceptable

FOCUS NAFTA
Data set

Half-life Model Half-life Model

#1 60 SFO 94 DFOP (slow phase)

#2 39 SFO 53 IORE tR

#3 55 SFO 102 IORE tR

#4 211 SFO 282 DFOP (slow phase)

#5 232 SFO 1,070 DFOP (slow phase)

#6 62 SFO 97 IORE tR

#7 66 SFO 94 DFOP (slow phase)

#8 41 SFO 74 IORE tR

#9 43 SFO 87 IORE tR

#10 2.9 SFO 2.5 IORE tR

#11 2.2 SFO 2.2 SFO

Figure 3. Output by the NAFTA PESTDF tool for data set #3.
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Figure 3 presents the output by the NAFTA PESTDF tool for data set #3.
According to the NAFTA guidance, the SFOmodel was rejected, because it did not
provide the best fit based on the guidance-specified statistical criterion. However,
in laboratory experiments, degradation rates often slow down near the end of the
experiment, sometimes at least partially as a result of the changes in the conditions
(biological activity) in the incubation flasks, which would not be representative of
behavior under field conditions. This effect is particularly noticeable in longer
studies, such as 365-day laboratory studies required by previous guidelines for US
and PMRA. In addition, degradation in laboratory conditions can slow down due to
other factors, such as decreased bio-availability as a result of increasing sorption to
soil, which may be representative of behavior under field conditions, or increased
sorption with time. Because of the potential for slowing of degradation due to
changes in the incubation flasks, the FOCUS procedure allows SFO kinetics to be
used for data sets that appear to sufficiently follow SFO kinetics through the main
portion of the degradation, even though a statistically better fit might be obtained
with another kinetic model. The reason FOCUS selects SFO model for such cases
is because FOCUS procedure allows the use of visual inspection criteria.

Table 2. Comparison of Half-Life (in Days) Determined by FOCUS and
NAFTA Guidance for Data Sets Which FOCUS Procedures Determined

That Non-First Order Kinetics Were Preferred

FOCUS NAFTA
Data set

Half-life Model Half-life Model

#12 57 FOMC 46 DFOP (slow phase)

#13 30 FOMC 30 IORE tR

#14 65 FOMC 58 DFOP (slow phase)

#15 158 DFOP (slow phase) 160 DFOP (slow phase)

#16 169 DFOP (slow phase) 170 DFOP (slow phase)

#17 210 DFOP (slow phase) 210 DFOP (slow phase)

#18 142 DFOP (slow phase) 143 DFOP (slow phase)

#19 90 DFOP (slow phase) 91 DFOP (slow phase)

#20 434 DFOP (slow phase) 434 DFOP (slow phase)

Table 2 summarizes evaluations for data sets which the EU FOCUS
procedures determined that the SFO kinetics was not acceptable, therefore
non-first order kinetics was used. Data sets (#12 to #14) fitting the FOMC model
based on the EU FOCUS guidance, were described by the IORE model which is
mathematically equivalent to FOMC, and the DFOP model based on the NAFTA
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guidance. The derived half-lives from the NAFTA tool are comparable or slightly
shorter. The data sets (#15 to #20) were described by the DFOP model according
to both EU FOCUS and NAFTA guidance, the derived half-lives are comparable
as expected.

Figure 4. Output by the NAFTA PESTDF tool for data set #5.

Additional Evaluation of Data Set #5

For data set #5, as shown in Figure 4, the output from the NAFTA PESTDF
tool shows that the fitting quality of SFO and IORE/DFOP were similar. However,
the resulted half-life from IORE is 4 times higher than SFO. Because of this
significant discrepancy, additional work was done on this data set using the
KinGUI (Version 2.2012.209.845) (7) and ModelMaker (10) software programs
for estimating kinetic fits. Figure 5 shows the results for SFO and DFOP kinetics
from KinGUII and the results for IORE and DFOP kinetics from ModelMaker.
Kinetic endpoints for these fits are provided in Table 3. Both the NAFTA tool and
KinGUI predicted essentially the same good fit for SFO kinetics, with a half-life
of about 228 days and a χ2 error of 1.3%. For DFOP kinetics the estimated DT50
in the slow compartment was the same with KinGUI and ModelMaker, although
the optimization procedure was somewhat different, especially for the fast
compartment, probably reflecting the different optimization routines (iteratively
weighted non-linear least squares for KinGUI and non-linear least squares for
ModelMaker). However, NAFTA tool fit was worse (χ2 error of 1.2% compared
to 0.84% and 0.93% for KinGUI and ModelMaker, respectively), indicating
that the optimization routine may have become stuck in a local minimum. In
addition for the IORE fits, there was a significant difference in the representative
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half-life (tR IORE) calculated with the NAFTA tool (1620 days) and ModelMaker
(754 days). The parameters describing DFOP are not significant as shown by the
FOCUS parameter significance test. More work is needed to understand why the
NAFTA tool produced such different results compared to other standard software
packages.

Table 3. Comparison of Kinetic Endpoints for Data Set #5 Obtained Using
Different Software Packages

Model SFO DFOP IORE

Tool t1/2 (d) Overall
DT90 (d)

Slow-phase
(k2) t1/2 (d)

Overall DT90
(d) tR, IORE (d)

KinGUI 228 779 238 - -

ModelMaker - 778 238 2503 754

NAFTA 228 2931 1070 5397 1620

Figure 5. Kinetic fits for data set # 5 obtained with ModelMaker™ and KinGUI
comparing to the fit with NAFTA tool in Figure 2. Note that in the lower left hand

graph, the DT50 provided is actually the tR (representative half-life).
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Conclusions and Recommendations

Regulatory exposure modeling is used to estimate environmental
concentraions of crop protection products in the risk assessment process. Reliable
data analysis to derive the critical degradation rate for modeling is therefore
fundamental to sound regulatory decision making. The main difference between
the EU FOCUS guidance and the NAFTA guidance is the acceptance criteria of the
SFO model fit. The NAFTA guidance is more strict in accepting SFO model due
to the criteria restricted to only significant test of N value, therefore it determines
that the half-lives for exposure models are calculated from non-first order model
(IORE/DFOP) more often than the EU FOCUS guidance. Consequently, the
use of the NAFTA tool will often result in slower degradation rates (longer
half-lives) than the values determined using the kinetic guidance from FOCUS.
The magnitude of the difference of datasets presented in this study is within
4 times difference. To our knowledge, the difference can be higher (e.g. one
order of magnitude higher). The difference will be even greater after the EPA
exposure assessment approach adjusts the degradation rate to be the upper bound
of the 90th percentile confidence interval (FOCUS guidance specifies the use of
the geometric mean or median, depending on the number of values). Further
examination of the acceptance criteria for the first order kinetics in the NAFTA
tool is recommended (such as choice of α value for the significance test). When
SFO kinetics provides an adequate fit of the data, user should be able to select
SFO model based on visual inspection and its use should be considered for the
principle of simplicity and chemical and biological basis, even if an improved fit
is obtained with more complicated kinetics.

For data sets described by non-first order model (DFOP or FOMC) according
to FOCUS guidance, similar half-lives are obtained with the EU FOCUS and the
NAFTA guidance. However, it is recommended that the NAFTA guidance should
perform a model parameter significance test to reject or accept non-first order
models, and avoid half-lives determined from a model fit with non-significant
parameters. Significance test results of the model parameters should be reported
as part of the results. If goodness of fit for both SFO and non-first order models
is statisitically significant, preference should be given to SFO as outlined in the
decision charts (Figure 1 and 2).

While the use of first-order half-lives in exposure models is appropriate
for screening level assessments, the ability to conduct higher tier exposure
assessments considering degradation patterns that do not follow SFO kinetics
should be maintained as a higher tier option. In some cases, especially for
ecological assessments, the initial rapid degradation can be sufficient to reduce
exposure levels such that the risk quotient does not exceed regulatory levels of
concern. One approach that can be used with existing models is the use of DFOP
kinetics by modeling the compound as two substances, one with a faster and the
other with a slower degradation rate. Consideration of time-dependent sorption in
higher tier exposure assessment should be also helpful to address non-first order
degradations.
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Chapter 7

Principles of the Use of Aged Sorption Studies
in EU Regulatory Exposure Assessments

Sabine Beulke* and Wendy van Beinum
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York YO41 1LZ, United Kingdom
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Regulatory exposure assessments for pesticides assume in the
first instance that pesticide sorption is constant. Equilibrium
sorption coefficients are used to predict environmental
concentrations in groundwater. In Europe, the calculations
can be refined considering an increase in sorption over time
(‘aged sorption’). The U.K. Chemicals Regulation Directorate
(CRD) commissioned research to underpin the development of
a regulatory guidance document on aged sorption. The draft
guidance proposes how to measure aged sorption of parent
compounds in laboratory studies, outlines procedures to fit
kinetic models to the experimental data and suggests criteria
to test the goodness of fit and acceptability of the parameters.
Options for use of the parameters in EU regulatory groundwater
exposure assessments are highlighted. A description of the
principles of the draft guidance is given in this chapter.

Introduction

The characterization of sorption of a pesticide to soil is a key requirement
of the regulatory process that pesticides must undergo before being placed
on the market in the EU. Sorption data are used in the environmental risk
assessment to calculate predicted environmental concentrations in groundwater
using mathematical pesticide leaching models. The calculated long-term annual
average concentrations in groundwater are compared with regulatory triggers. In
the first instance, sorption is measured in standard laboratory batch studies (1) and
the sorption coefficient is determined as the ratio between sorbed and dissolved
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pesticide. It is assumed that sorption coefficients are constant over time and that
sorption is fully reversible (‘sorption equilibrium’). However, adsorption has
frequently been observed to increase over and above the batch sorption value the
longer the contact time between the substance and soil (2–5). This phenomenon
will be referred to as ‘aged sorption’ in this chapter, other expressions are also
used, such as ‘time dependent sorption’, ‘kinetic sorption’ and ‘non-equilibrium
sorption’.

Companies wishing to register a new compound in Europe have the option
to account for the increase in pesticide sorption over time within the calculation
of predicted environmental concentrations in groundwater. For this purpose,
experimental laboratory studies are undertaken that demonstrate aged sorption.
Conceptual models that describe the mechanisms of aged sorption are fitted to the
experimental data and the model parameters are optimized. Pesticide leaching
models that include the same description of aging are then employed to simulate
pesticide movement to groundwater, with the aged sorption parameters set to
those optimized against the experimental observations.

The U.K. Chemicals Regulation Directorate (CRD) commissioned a research
project funded by the Department of Environment, Food and Rural Affairs
(DEFRA) to develop guidance on methodologies for aged sorption experiments
and modeling in the regulatory context. A literature review, experimental work
and modeling were undertaken to investigate approaches for assessing aged
sorption of pesticides (6). A guidance document was drafted based on the
findings of the research project. After discussion with stakeholders and testing
by an independent consultancy (sponsored by the European Crop Protection
Association), and following further DEFRA funded research (7), a revised
guidance document was compiled (8). The general procedure proposed in the
draft guidance document is depicted in Figure 1. This chapter presents the
principles of each step and outlines the key recommendations. More detail is
available in the documents published on the DEFRA website (6–8).

Figure 1. Schematic representation of the procedure to account for aged sorption
in the calculation of predicted environmental concentrations in groundwater.
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It is important to remember that there are differences in the environmental risk
assessment procedure in the EU and US/Canada. The option to account for aged
sorption in regulatory exposure assessments for pesticides currently only exists in
Europe. The recommendations summarized in this chapter are therefore applicable
to Europe only, although the general principles could be useful in a wider context.

Disclaimer
It should be noted that the U.K. CRD recommends “that the draft guidance is

NOT used for registration purposes until after EFSA PPR Panel scrutiny and until
the guidance document has been ‘noted’ by the EU Standing Committee on the
Food Chain and Animal Health (SCFCAH). If applicants wish to use the guidance
as part of a regulatory submission, it is strongly recommended that they discuss
this first with the appropriate regulatory authority.”

Experiments To Quantify Aged Sorption of Pesticides in Soil
Experimental methods to measure aged sorption parameters of parent

compounds in laboratory studies were reviewed (6). A standardized protocol
was recommended in the draft guidance (8). Standardization is desirable, in
order to enhance the reproducibility of the experimental results and maximize the
reliability of derived model parameters. The test substance is added to sieved soil
which is then incubated in the dark at constant temperature and soil moisture.
Samples are taken at intervals, extracted for 24 hours with aqueous solution (0.01
molar CaCl2) to determine the concentration in the liquid phase of the soil, and
extracted with organic solvent to determine the total extractable pesticide residue.
The procedure is similar to that recommended by OECD guideline 307 for aerobic
and anaerobic transformation in soil (9) except that an aqueous extraction step
is added for measuring the quantity that is not adsorbed. An example dataset is
shown in Figure 2.

Conceptual Model
An overview of mathematical models that describe slow pesticide sorption

is given by Suddaby et al. in Chapter 11 of this book. Two broad categories,
mass transfer models and diffusion models, can be differentiated. Mass transfer
models assume that the soil can be conceptualized as compartments with different
properties. Solute movement between the compartments follows the first-order
reaction kinetics with transfer rate coefficients. There are several types of
mass-transfer models: mobile-immobile models assume that there is a rate-limited
transfer between mobile and immobile regions of soil pore water. Multi-site
models conceptualize the rate-limited process as a solute transfer between sorption
sites of different characteristics. Aged sorption is caused by slow movement of
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pesticide molecules to less accessible sorption sites and slow desorption from
these sites. The ratio of sorbed to dissolved pesticide thus increases over time.
Stochastic models account for heterogeneities of soil characteristics and their
affinity for pesticides. They do not explicitly consider multiple compartments, but
assume that there is a continuum of possible first-order desorption rate constants.
The rate constants are distributed according to a probability density function.

The mass-transfer models described above approximate the slow transfer
using the first-order kinetics. Diffusion models (e.g. (10, 11)) use mechanistic
descriptions of diffusion of the pesticide against a concentration gradient which
leads to rate-limited transport in soils. Intra-aggregate pore diffusion and
intra-organic diffusion through micropores of soil organic matter are possible
processes.

The selection of a time-dependent sorption model for regulatory use needs to
strike a balance between the ability of the model to describe aged sorption under
a range of situations, and the feasibility to determine the model parameters from
experiments with reasonable effort. In addition, it must be possible to implement
the aged sorption routine into pesticide leaching models that simulate the transport
of pesticides through the soil profile. The research that underpins the guidance
development considered only the simplest form of the multi-site models (two-site
model) to be a viable option (6). Two–site models assume that sorption reactions
are fast on one fraction of the sorption sites and slow on the remaining sites (e.g.
(12–14)). The fast sites could be easily accessible sites on the outer surface of
soil aggregates whereas the slow sites might comprise less accessible binding
sites within soil organic matter. The fast reaction cannot be distinguished from
instantaneous processes and is thus described by equilibrium partitioning. The
transfer between the fast and slow – or non-equilibrium – sites is described by
the first-order reactions. The rates of adsorption and desorption that describe this
transfer are identical in some models and different in others. Degradation can
occur in some or all of the three phases (liquid, equilibrium, non-equilibrium).
The rates of degradation can be identical or differ between the compartments.

Boesten et al. (15) implemented the two-site model proposed by Leistra et al.
(16) for a laboratory system in the PEARLNEQ software. This two site model and
a very similar formulation (14) are the most common mathematical descriptions
of time-dependent sorption that are currently used in the regulatory context. They
are integrated into the FOCUS versions of the pesticide leaching models PEARL,
MACRO, PELMO and PRZM used in European registration (17). A summary of
the assumptions and the parameters used by PEARLNEQ are given below:

• Extraction of the soil with aqueous solution for 24 hours characterizes the
equilibrium fraction. The sorbed equilibrium domain can be calculated
from the aqueous concentration and the total amount. Pesticide that is
not available in the equilibrium fraction (dissolved + sorbed) over this
timescale is considered to be in the non-equilibrium fraction.

• Sorption on the equilibrium sites is instantaneous with a sorption
coefficient KOM,EQ. Adsorption-desorption on the non-equilibrium sites
is described by the first-order mass transfer. PEARLNEQ makes the
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simplifying assumption that adsorption onto the non-equilibrium site
occurs at the same rate as desorption with an ad- and desorption rate
constant kdes (note that in reality adsorption and desorption rates can be
different). The ratio of non-equilibrium sorption to equilibrium sorption
is fNE.

• When the ultimate sorption equilibrium is attained (i.e. when the
non-equilibrium sites reach equilibrium), sorption on the equilibrium
and the non-equilibrium sites can be described by a Freundlich isotherm.
The ratio of sorbed to dissolved pesticide on both sites is concentration
dependent, this non-linearity is characterized by the Freundlich exponent
1/n. The Freundlich exponent is the same for the equilibrium and
non-equilibrium domain.

• Irreversibly sorbed pesticide is not considered explicitly in the model. It
is assumed that all pesticide that is either degraded or irreversibly bound
is ‘lost’ from the system (i.e. not available for desorption and leaching).
The two processes are thus lumped together.

• Degradation occurs only in the liquid phase and on the equilibrium
sorption sites and follows the first-order kinetics with a degradation
half-life DegT50. Molecules sorbed on the slow non-equilibrium
sorption sites are considered not to degrade.

• The equations that are commonly used to correct degradation in the bulk
soil for effects of soil moisture and temperature on degradation (18, 19)
are valid for degradation in the two-site model.

• The adsorption-desorption rate and the parameter that characterizes the
ratio of equilibrium to non-equilibrium sorption are considered to be
independent of soil moisture and temperature over the environmental
ranges of these conditions in soil.

Parameters Estimation

The draft guidance document recommends that the two-site aged sorption
model should be fitted against the experimental data using optimization tools (8).
The parameters that give the best match to the data are recorded. The model
is fitted to measurements of the total extractable mass of pesticide in soil (i.e.
the sum of the mass sorbed plus the mass in the liquid phase) and the aqueous
concentration, measured at several points in time. The model has six parameters:
the initial concentration of the pesticide Mp ini, the degradation half-life DegT50,
the equilibrium (i.e. initial) sorption coefficient KOM,EQ, the Freundlich exponent
1/n, the ratio of non-equilibrium sorption to equilibrium sorption fNE and the
desorption rate constant kdes. The extent and speed of the increase in sorption
over time is determined by fNE and kdes. The Freundlich exponent is fixed during
optimization. For new studies, an independently measured batch Freundlich
exponent should be available for each soil used in the aged sorption experiment.
In older studies where this is not the case, an average of the Freundlich exponents
for the substance measured in other soils could be used.
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The handling of the data before and during the fitting influences the
robustness of the parameters. Comprehensive research was undertaken to identify
requirements that will help investigators to design experiments in an efficient way
and maximize the potential for robust parameter estimation. The recommended
principles of the data requirements and data handling are summarized here, more
detail can be found elsewhere (6–8). The recommended time for extraction of
the soil samples with an aqueous solution is 24 hours. Short-term adsorption,
precipitation and dissolution influence the measurements during the first two days
after pesticide application. The two-site model is not able to describe the rapid
reactions immediately after application, as well as the slower processes operating
at a time scale of weeks or months, because it contains only one kinetic sorption
site. Elimination of samples of total mass and aqueous concentration taken less
than 2 days after application gives a better description of the long-term behavior.
Measurements below the limit of quantification (LOQ) are also discarded. It is
proposed that at least six sampling times later than day 1 should remain following
elimination of data below LOQ and any outliers, with at least one sampling time
point any time during day 2 or day 3. A minimum of 2 replicates per sampling
date is recommended. Replicate measurements are used individually in the
model fitting. The research concluded that weighting of the measurements by the
inverse of the measured value during the optimization is advantageous because it
accounts for the fact that absolute values for the total mass are often much larger
than the concentrations in the liquid phase. It is proposed that at least 10% of
the total mass should be sorbed at each time point. Otherwise, instantaneous
equilibrium sorption data should be used in the exposure assessment. Relaxed
criteria are outlined for legacy studies that were undertaken before the guidance
was made available (8).

Visual and Statistical Assessment of the Goodness of Fit

The DEFRA-funded research identified criteria for accepting or rejecting the
fit of the two-site model to experimental data (6–8). The recommendations are
summarized below. Consequences of failing the criteria are outlined in the draft
guidance (8).

It is important that the model gives a good visual fit to the measured data
for total mass (sorbed + dissolved; extractable with organic solvent) and aqueous
concentration (extractable with CaCl2) plotted versus time. Figure 2 shows
measured and simulated data for an example dataset. The model matches the
data well. Weighted residuals (simulated minus observed value divided by
observed) are a useful means to detect systematic deviations (patterns of over-
or under-predictions). In this example, the residuals are small and randomly
distributed around the zero line.

Figure 2 also shows apparent Kd values (Kd,app) at each sampling time. These
illustrate the increase in sorption over time. Apparent Kd values are the ratios of
sorbed pesticide per mass unit soil to the concentration in the liquid phase per
volume liquid. Apparent Kd values should show a clear increase in sorption over
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time that can be distinguished from the scatter in the data. In Figure 2, Kd,app
increases over time until the end of the experiment and this is matched well by the
model.

Figure 2. Example of fitted vs measured total mass (sorbed + dissolved)
and liquid phase concentrations, apparent Kd values and residuals for the

non-equilibrium sorption model (8).

The visual assessment is intended to be used in conjunction with a statistical
assessment. The proposed guidance (8) selected a χ2 error value as the statistical
criterion. This is calculated for total mass and concentration data together. The
smaller the error value, the better the fit. The χ2 error should ideally be <15%
although this is not a cut-off. The small χ2 error values of 1.1% for the total mass
and concentration data shown in Figure 2 confirm that the model gives a very good
fit to the measurements.

139

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Evidence for Aged Sorption

The aim of the modeling is to estimate parameters that characterize aged
sorption. It is, therefore, important that the experimental data show sufficient
evidence that aged sorption is relevant. The draft guidance proposes that the
decision could be based on a comparison between the aged sorption model and
an equilibrium model that ignores aged sorption (8). This can be achieved by
setting fNE and kdes to zero during model fitting. The equilibrium model includes
degradation. Figure 3 shows the total mass and concentration data and apparent
Kd values for both models plotted against time (the left hand side of Figure 3 is
identical with that in Figure 2).

Figure 3. Example of fitted vs measured total mass (sorbed + dissolved)
and liquid phase concentrations, apparent Kd values and residuals for the

non-equilibrium (left) and equilibrium (right) sorption model (8).

A comparison between the twomodels shows clear evidence for aged sorption
in this example. There is a systematic deviation of the equilibrium model from the
data. The equilibrium model simulates a slight increase in sorption over time.
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This is due to the use of a Freundlich sorption isotherm with a 1/n value <1,
as the pesticide degrades over time, the ratio of sorbed to dissolved pesticide is
shifted more and more towards the sorbed state. But the increase in sorption due to
Freundlich sorption is not sufficient tomatch the observed increase. Total mass and
concentration, and particularly the apparent Kd values, are described much better
when aged sorption is considered. The χ2 error is much smaller (2.2% compared
with 14.8% for the apparent Kd).

Acceptability of the Parameters

Research has been undertaken to identify suitable criteria for the acceptability
of the optimized aged sorption parameters (20). This aimed at reducing
uncertainties in groundwater assessments based on these parameters without
being too restrictive. Actions that should be taken in case the criteria are not met
are described in the draft guidance (8).

Optimization tools usually give the optimized parameter values together with
the standard error or the 95% confidence interval for each parameter. Confidence
intervals reflect the uncertainty around the parameter estimates. Uncertainty can
be caused by scatter in the measurements, a small number of measurements,
interdependency between two or more parameters and the lack of sensitivity of
the model parameters. The relative standard error (RSE) is a statistical criterion
derived from the confidence interval. The RSE can be approximated by dividing
the 95% confidence interval by 4 × the parameter value to calculate the RSE. This
is because the width of the 95% confidence interval equals ~4 times the standard
deviation (or standard error) based on a normal distribution (the fitted value plus
or minus 2 × the standard deviation). The research suggested that the confidence
interval or the RSE could be used as an indication for the reliability of the fitted
parameters. The draft guidance proposes that the RSE for any of the parameters
should not be greater than 0.40. This implies that the width of the 95% confidence
interval must not be greater than 160% (i.e. ± 80% of the parameter estimate).

In addition, it was suggested that the fitted KOM,EQ value should be compared
with the KOM,EQ value that is calculated from the measured total mass and
concentration in the liquid phase on day 0. A discrepancy of 20% or less between
the fitted and average measured initial KOM is acceptable. The fitted value of the
parameter fNE must be <10 and the fitted kdes must be <0.5 day-1.

Use of Aged Sorption in Regulatory Leaching Assessments

The analysis outlined above will have to be undertaken for each individual
laboratory aged sorption experiment. Fitted parameters can only be accepted if all
criteria are met. If a study meets the data requirements and goodness of fit criteria,
but the RSE is too large, then default parameters (0.3 for fNE and 0.01 for kdes) can
be used, provided aged sorption is relevant. It should be noted that the guidance
applies to new studies. Relaxed criteria are outlined for legacy studies that were
undertaken before the guidance became available.
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Once the appropriate parameters have been identified for each study, a
leaching assessment can be carried out that accounts for aged sorption (‘higher
tier assessment’). Chapters 16, 17, and 18 of this book illustrate how aged
sorption can significantly influence predicted environmental concentrations.

The proposed guidance suggested that four studies should be undertaken
for each new compound, using different soils. Aged sorption should only be
accounted for in the groundwater assessment if at least two datasets result in
either default or fitted parameters. There are, in principle two options for the use
of the parameters from the four (or more) studies in calculations of predicted
environmental concentrations in groundwater (PEC GW):

1. Each parameter combination (fNE, kdes, KOM,EQ, DegT50 and the
Freundlich exponent used in the optimization) is used individually in
the leaching model. PEC GW are derived for each combination and the
median PECs is calculated thereafter.

2. The parameters are averaged over all soils (arithmetic mean KOM,EQ, 1/n
and fNE, geometric meanDegT50 and kdes. The average is entered into the
leaching model, i.e. a single PEC GW is calculated.

At lower tiers of the leaching assessment where aged sorption is ignored,
degradation and sorption properties are averaged over all available studies and the
mean, median or geomean is used in the calculations. For consistency between the
lower and higher tier, option 2 would be the preferred choice. But the parameters
of the aged sorptionmodel seem to be correlated with each other (6), and averaging
prior to use in the leaching modeling may not be appropriate. The choice of option
1 or 2 does not necessarily affect the calculated concentrations in groundwater, but
differences cannot be ruled out at this stage. For the time being, the best optionmay
be to use both methods alongside each other in higher tier leaching assessments
that account for aged sorption to gain more experience.

There is a general understanding that risk assessments at the higher tier should
not ignore the information generated at the lower tier. It is also accepted that the
degree of conservatism should be reduced at the higher tier assessments relative
to the lower tier. The use of parameter combinations from the aged sorption
studies in the higher tier leaching modeling, without consideration of the lower
tier data on degradation and sorption would conflict with these principles. Both,
degradation and equilibrium sorption parameters derived from the aged sorption
studies could differ considerably from those based on standard OECD 307 and 106
studies at the lower tier. Regarding degradation, the study conditions and design
of the aged sorption study are practically identical to the lower tier OECD 307
studies. But even if the same soils were used in the lower and higher tier studies,
differences in degradation cannot be excluded. For example, these could arise from
differences in microbial activity in soils taken at different times. At the lower tier,
laboratory degradation data are often allowed to be combined with field DT50
values where degradation is often faster than in the laboratory. If the lower tier
data are ignored, then the higher tier leaching assessment with inclusion of aged
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sorption may result in a larger PECGW than the lower tier. Further analysis and
review of the implications of these procedures for exposure estimation is needed
to explore if and how these issues could be resolved.

It is also often assumed that higher tier assessments reduce the uncertainty in
the calculated estimates of pesticide exposure. Leaching assessments that include
aged sorption do not always lead to less uncertainty, because the optimized aged
sorption parameters can have wider confidence intervals (or perhaps reveal for
the first time that a false degree of certainty has been associated with leaching
assessments based upon instantaneous sorption studies). But, aged sorption is
definitely a relevant phenomenon for pesticides, and a degree of uncertainty will
have to be accepted in the interest of an increased realism of the assessment.
The proposed procedures (8) aim at limiting the uncertainty without being too
restrictive.

Outlook

CRD has submitted the draft guidance and relevant reports to the European
Food Safety Authority (EFSA). EFSA will explore the potential for further
refinement and adoption of the guidance at European level.

The draft guidance that is published on the DEFRAwebsite (8) only considers
laboratory aged sorption studies with directly dosed parent compounds. Current
research commissioned by CRD is exploring the options for estimating aged
sorption parameters for metabolites formed from dosed parent substances and
for pesticides in field studies. Two options are being considered for field studies.
The first option aims at estimating all aged sorption parameters (fNE, kdes, KOM,EQ,
DegT50) by fitting the two-site model against the field data. The second option is
to use aged sorption parameters from the laboratory in the modeling of the field
study and optimize only the DegT50 against the field experiment. The intention
would be to use the field DegT50 in combination with laboratory aged sorption
parameters in pesticide leaching modeling for EU regulatory assessments.

Chapter Summary

Pesticide leaching modeling at the first tier of EU regulatory environmental
exposure assessments assumes that pesticide sorption is instantaneous and fully
reversible. This implies that the strength of sorption is constant with time. In
reality, sorption has frequently been observed to increase after longer times of
interaction with the soil, thereby reducing the risk for leaching. This phenomenon
is referred to as ‘aged sorption’ in this chapter. Aged sorption can be accounted
for within the calculation of pesticide leaching in the regulatory context in the
EU. For this purpose, experiments are carried out over extended timescales in the
laboratory and the results are described with mathematical models that account
for the mechanisms of aged sorption. The estimated parameters are entered into
pesticide leaching models that use the same mathematical concepts.
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The U.K. Chemicals Regulation Directorate (CRD) commissioned a research
project (funded by DEFRA) to address a lack of agreed and clear guidance on
how experimental aged sorption studies should be conducted and interpreted and
how the results should be implemented in regulatory exposure assessments in
Europe (6). A draft guidance document was developed. This was presented and
discussed at a workshop with representatives of European regulatory authorities,
academia, consultancies and industry. Feedback was collated. After testing of the
guidance against real datasets by an independent consultancy (sponsored by the
European Crop Protection Association) and further DEFRA funded research, the
guidance was revised (7). The revised guidance (8) was submitted to the European
Food Safety Authority (EFSA) for scrutiny. EFSA will explore the potential for
developing a guidance document at EU level. The principles of the draft guidance
document (8) are presented in this chapter. The key recommendations are:

• The recommended experimental procedure is very similar to an OECD
307 laboratory degradation study with an additional aqueous extraction
step

• A two-site model that assumes rapid binding on some sorption sites
and slow adsorption-desorption on the remaining sites is considered
the best option in the context of the regulatory environmental exposure
assessment.

• Methodologies for data handling and data requirements were proposed
(e.g. at least six time points, two replicates, eliminate data <LOQ), in
order to increase the likelihood of robust parameter estimation and obtain
maximum benefit from the experimental effort.

• The goodness of fit of the model to the data is assessed using a
combination of visual assessment and a statistical test. The observed
total mass (sorbed + liquid) and liquid phase concentration over time
should be matched well by the model, without systematic deviations
from the measured data. The guidance proposes a χ2 error value as the
statistical criterion.

• The acceptability of the model parameters is based on the relative
standard error with a current suggestion that this should not exceed 0.4.
It is further proposed that the fitted KOM,EQ value should be within ± 20%
of the KOM,EQ value that is calculated from the measurements on day 0.

• It should be checked whether there is evidence for aged sorption in the
dataset by comparing the fit of the aged sorption model with that of an
equilibrium model.

• For new studies, the fitted aged sorption parameters are accepted for
use in leaching modeling if all criteria set out in the guidance are met.
Default aged sorption parameters can be used under some circumstances.
Relaxed criteria for legacy studies that were undertaken before the
guidance became available are outlined in the draft guidance document.

• Experiments with four or more soils should be undertaken for each
substance. Options for use of the parameters from these studies in the
regulatory groundwater exposure assessment are discussed.
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Chapter 8

Biphasic Behaviors of Pesticide Degradation in
Soils: Verification via Pathway Kinetic Fits

Michael Xiao Huang*

DuPont Crop Protection, 1090 Elkton Road, Newark, Delaware 19711
*E-mail: Michael-Xiao.Huang@dupont.com.

The biphasic behavior of pesticide degradation in soil
is currently determined by fitting the parent compound
degradation data to a simple first-order (SFO) model and a set
of biphasic kinetic models, such as FOMC (the first-order in
multi-compartments), DFOP (the double first-order in parallel),
and IORE (the in-determined order rate equation). If SFO fit
is rejected by visual and statistical assessment, degradation is
considered biphasic, and a degradation half-life that represents
the slow phase degradation is selected for exposure modeling.
However, in some cases, SFO fit is acceptable although FOMC
and DFOP provide a better fit. The use of a biphasic fit
may result in a much longer estimated degradation half-life
than warranted. Thus, appropriate identification of biphasic
behavior is critical in determining a conservative but realistic
degradation rate for a pesticide. In this study, we explore the
feasibility of verifying biphasic behavior by fitting both parent
compound and metabolite data with SFO-SFO and DFOP-SFO
kinetic pathway models. For the three datasets explored, we
demonstrate that pesticide biphasic degradation in soil could
be due to an artifact, reduced microbial activities, and/or aged
sorption. The impact on selection of degradation rate of a
pesticide for modeling is also discussed.
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Introduction

The degradation rate of a pesticide in soil is one of the most important
environmental fate properties used in exposure modeling and risk assessment.
In regulatory models, pesticide degradation is usually simulated by the simple
first-order kinetics (SFO). However, pesticide degradation in soil is often biphasic
or more suitably represented by non-first order kinetic models such as FOMC
(the first-order in multi-compartments), DFOP (the double first-order in parallel),
and IORE (the in-determined order rate equation). Mechanistically, pesticide
degradation is considered biphasic if degradation is fast initially but slows down as
it becomes more tightly bound to soil. As a conservative approach, a degradation
half-life DegT50 that represents the slow phase degradation of a pesticide in soil
is determined by fitting parent compound data to a biphasic model and this value
is used in regulatory models that assume the first-order kinetics of degradation.
In this discussion, DegT50 is used to represent the degradation half-life selected
for exposure modeling, while DT50/DT90 denotes the time taken for 50% or 90%
of parent pesticide to degrade.

In the current European kinetics guidance (1), degradation is considered
biphasic and the SFO fit to the parent compound data is rejected when one of the
following three criteria are met: 1) the χ2–test error > 15%; 2) the degradation rate
(k) t-test fails, and 3) visual assessment is unacceptable. For biphasic degradation,
if > 90% of parent compound has degraded at the end of study, then FOMC
DT90/3.32 is selected as the slow phase DegT50. If < 90% of parent compound
has degraded, DFOP slow phase degradation rate (k2) (as defined in the equation
M = M0 (g e-k1 t + (1-g) e-k2 t); M and M0 = pesticide residue at time t and t = 0; k1
and k2 are the fast and slow phase degradation rates respectively; g is the fraction
of M0 in the fast degradation phase) is converted by the equation ln (2)/ k2 to
DegT50 and used for exposure modeling.

In the NAFTA kinetics guidance (2), the parent compound data are fit to
the IORE model (dM/dt = - kIORE×MN; M = pesticide residue at time t and kIORE
is the rate constant of degradation; N is the exponent). The SFO fit is rejected
if the exponent N is significantly larger than 1. If the SFO fit is rejected, the
IORE representative half-life (t1/2) and DFOP slow phase DegT50 (ln(2)/k2)
are calculated and whichever is shorter is selected to represent the slow phase
degradation of pesticides in soil.

The evaluation by Tang et al (3) in this book indicates that the SFO fit could
be rejected by the NAFTA guidance (2) even when it is acceptable by the FOCUS
kinetic guidance (1). There is also a trend in regulatory review that SFO fit is
rejected when FOMC and DFOP provide a better fit. In these cases, the selected
DegT50 could be 2-4 times longer than the actual half-life (DT50) of pesticide
degradation. Thus, verification of a biphasic behavior is critical in determining
the actual degradation rate of a pesticide in soil.

Theoretically, biphasic degradation could result only from aged sorption,
but experimentally it could also arise from an experimental artifact or reduced
microbial activities (1). For aged sorption, pesticides transfer gradually to a
more tightly bound phase, causing the appearance of biphasic degradation. In
this case, a DegT50 that represents the slow phase degradation is justified for
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use in modeling. However, if biphasic behavior is an experimental artifact
or due to reduced microbial activities, then a certain deviation from the SFO
fit should be allowed before SFO is rejected since no slow degradation phase
actually exists. Thus, without verification of biphasic degradation, it is likely that
over-conservative degradation rates could be selected for exposure modeling.

In this study, we explore the feasibility of verifying biphasic degradation by
fitting both parent compound and metabolite data to a SFO-SFO or DFOP-SFO
kinetic pathway model, with SFO or DFOP for parent compound and SFO for
metabolites. Pesticide degradation in soil is usually conducted with 14C-labeled
compound to quantify both parent compound degradation and metabolite
formation, and to determine degradation pathway. Experimentally, the kinetics
of degradation of parent compound in soil must be consistent with the kinetics
of formation of all metabolites. Thus, if parent compound degradation is indeed
biphasic, the DFOP-SFO pathway model is required to describe both parent
compound degradation and formation of metabolites.

In this study, three datasets are selected to represent degradation under
normal and reduced microbial activities and under the influence of aged sorption,
respectively. With these datasets, we demonstrate that biphasic behavior could
be due to an experimental artifact, reduced microbial activities, and/or aged
sorption, and the impact on determination of degradation rate of a pesticide in
soil is discussed.

Materials and Methods
Datasets Evaluated

Three datasets that represent the degradation of one pesticide in soil under
normal and reduced microbial activities, and another pesticide behavior under
the influence of aged sorption were selected for analyses. The degradation
studies were conducted with 14C-labeled compound at a temperature of 20°C
and a moisture content of 40-50% maximum water holding capacity. The
metabolites were identified and quantified, with the degradation pathway for one
pesticide experimentally confirmed by monitoring the degradation products of
each metabolite and the pathway for the other pesticide confirmed by regulatory
review. The bound residues, CO2, and minor unidentified metabolites were also
quantified, with a total recovery of 90-110%. The OECD guideline for these
experiments was followed.

Kinetics Analyses

The kinetics of degradation in soils for the pesticide was examined following
the European FOCUS kinetics guidance (1). The data for parent compound only
were fit with SFO and DFOP kinetic models, respectively. The SFO DegT50 and
DFOP slow phase DegT50 (ln(2)/k2) were calculated as two extreme degradation
rates that may be selected for modeling if degradation is considered biphasic. The
goodness of fit was visually and statistically examined and the significance of
degradation rate was analyzed with the t-test.
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The pathway kinetics fit when both parent compound and metabolites were
considered was conducted by using a step-wise approach, as recommended in the
FOCUS guidance (1). At Step 1, the parent compound and Stage 1 metabolites
(i.e., the metabolites formed directly from parent compound) were included in the
kinetic fits with SFO-SFO or DFOP-SFO models, respectively. A sink term was
included for parent compound and metabolites but was removed if its formation
fraction was optimized to 0.

At the subsequent steps, more metabolites were added until all metabolite
were included in the metabolic pathway for kinetic analysis. For all the datasets,
pathway kinetic fits were first simulated with SFO and then DFOP for the parent
compound to obtain optimal degradation rate constants. SFO was used for all the
metabolites in the SFO-SFO and DFOP-SFO fits. However, for the dataset with
reduced microbial activities, the metabolites (particularly those with formation
peaks observed) were simulated with FOMC, under the assumption that reduced
microbial activities impact degradation of parent compound and metabolites.

All the pathway kinetic models were set up and rate constants were optimized
using ModelMakerTM (4), as suggested in the FOCUS guidance (1). The goodness
of fit was examined visually and also statistically. The optimized parameters were
analyzed by the t-test.

Aged Sorption

Mechanistically, aged sorption can often yield behavior that looks like
biphasic degradation. Several two-site sorption models for aged sorption have
been developed, with variations in assumed degradation mechanisms (5–7). In
this study, we assume that degradation only occurs in soil pore water. Pesticide is
partitioned instantaneously between soil pore water and Site 1 (i.e., equilibrium
site) of the partition coefficient Kd. Pesticide is gradually transferred with time
via soil pore water (or transformed directly) to Site 2 to which pesticide is more
tightly bound at a partition coefficient approximated as Nneq × Kd, where Nneq
is the ratio of the partition coefficient for Site 2 to Site 1. Linear sorption is
assumed. The degradation of pesticide under the influence of aged sorption can
be represented in the following equations:
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where t is time (days), θ is soil water content (cm3 cm-3), ρ is soil bulk density (g
cm-3), S1 is concentration on the equilibrium Site 1 (μg g-1), S2 is concentration
on the non-equilibrium Site 2 (μg g-1), C is concentration in soil pore water (μg
mL-1), μl is the degradation rate in soil pore water (day-1), α is the desorption rate
constant from Site 2 (day-1).

This two-site model, as illustrated in Figure 1, is implemented using
ModelMakerTM, with the initial conditions of C (t=0) = Co, S1(t=0) = Kd Co, S2
(t=0) = 0, respectively.

Figure 1. Implementation of the two-site aged sorption model on ModelMakerTM
(F1, F2, and F3 represent the mass flow rates between compartments of S1, S2
and Sink as represented in eqs (1) and (4); the variables TotalMass (S in eq
(5)), SoilPoreConc (C in eq (6)), and ApparentKd (Kd_app in eq (6)) are defined
to: (1) fit the data for parent compound quantities in soils to the aged sorption
model and (2) calculate the apparent Kd_app from soil pore water concentration

C, S1, and S2 as shown in eq (6)).

The total mass (S) (μg g-1) in soils and apparent partition coefficient Kd_app are
defined as follows:

The parametersθ, ρ, and Kdwere experimentally determined for the soils used
in the degradation studies. Thus, the sorption data (Total mass vs. time) can be
fit to the two-site aged sorption model, with So (μg g-1) as an initial condition
and the parameters Nneq, α, and μl set for optimization. The goodness of fit was
examined following the FOCUS guidance (1), with the parameters also tested for
significance.
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The apparent partition coefficient Kd_App was generated as a function of time
(t) and compared to those measured for the soils with similar properties to verify
if the aged sorption is indeed responsible for biphasic degradation.

Results and Discussions

Artifacts

Biphasic degradation of pesticides in soil is usually characterized by the initial
rapid decrease from Day 0 followed by a slow decline near the end of the study.
SFO fit frequently misses the data point for Day 0 and the last 2-3 data points
near the end of the study, while DFOP fit can catch those data points, leading to
improved kinetic fit.

As shown in Figure 2, for Dataset # 1, the SFO fit describes the degradation
well from Day3 to Day 63, in which 80% of parent compound degraded, with a
χ2-test error of 11%. The degradation rate also passes at the t-test. The data point
at Day 0 is slightly missed, and the degradation at the last two sampling points is
overpredicted. However, SFO fit is arguably acceptable. Following the FOCUS
kinetics guidance, the estimated SFO DegT50 of 25.7 days can be accepted for
modeling.

Figure 2. SFO and DFOP kinetic fit for Dataset # 1.

However, the kinetic fit with DFOP is improved, with the data points at Day
0, Day 90, and Day 120 simulated. The error at which the χ2 test passes decreases
from 11% (SFO fit) to 3% (DFOP fit). The optimized degradation rates for k1 and
k2 for the DFOP model also pass at the t-test. The DFOP slow phase DegT50 (i.e.,
ln(2)/k2) of 53 days is nearly twice the SFO DegT50, and it will be selected for
modeling following the FOCUS guidance if degradation is considered biphasic
since the DT90 was not reached in the experiment.
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Figure 3. SFO-SFO and DFOP-SFO kinetic fit with Stage 1 Metabolites for
Dataset # 1.

In the pathway kinetic fit with Stage 1metabolites (i.e., themetabolites formed
directly from parent compound), parent compound and metabolites are visually
well simulated by the SFO-SFO model, with a χ2 error of 11-16% (Figure 3).
However, the kinetic fit for both parent compound and metabolites was improved
with DFOP-SFO model, with a χ2 error decreasing to 3% for parent compound
and 7% for the metabolites (Figure 3).

Thus, DFOP does provide a better fit for the parent compound than SFO,
either with the data for parent compound only or the data for the parent compound
and Stage 1 metabolites in the pathway fit (Figure 3). However, a contradiction
with the experimental observation is noticed in the DFOP-SFO pathway fit in
Figure 3, when the formation fraction of the sink for the parent compound is
compared to the combined radioactivity of bound residues, CO2, and un-identified
minor metabolites observed at the end of degradation study, or when the formation
fractions of Stage 1 metabolites are compared to the maximum combined
radioactivity of a Stage 1 metabolite and its further degradation products.

In the DFOP-SFO fit with the parent compound and its Stage 1 metabolites,
44% of parent compound goes to the sink, while 27% and 29% degrade to the
Stage 1 metabolites Met A1 and Met B1 respectively (Figure 3). This prediction
contradicts with the experimental observation. First, the formation fraction of
0.44 for the sink term of parent compound far exceeds the combined radioactivity
of 23% AR (AR = applied radioactivity) for the bound residue (19% AR), CO2
(0%AR), and un-identified minor metabolites (4%AR) at the end of the study.
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Second, the formation fractions of 27% for Met A1 and 29% for Met B1 are less
than the maximum combined radioactivity of 41%AR for Met A1 and its products
(Met A2 and Met A3), and 31% AR for Met B1 and its products (Met B2 and
Met B3) observed in the study. This indicates that DFOP overpredicts the parent
compound degradation rate (as indicated by its shorter DT50 than SFO DT50 in
Figure 3) so that the mass generated from parent compound is more than what the
formation pattern of a Stage 1 metabolite could indicate. As a result, the excess of
mass generated from parent compound is forced to the sink, but not enough mass
goes to Stage 1 metabolites so that their degradation products can be predicted.

Thus, if DFOP is selected for parent compound degradation, the degradation
products of Stage 1 metabolites, particularly Met A1 because more degradation
products are formed due to its shortDT50, may not be simulated in the full pathway
fit when all metabolites are included.

In the SFO-SFO fit with the parent compound and its Stage 1 metabolites,
only 11% of parent compound goes to the sink, while 50% and 39% degrade to
the Stage 1 metabolites Met A1 and Met B1. This prediction is consistent with the
experimental observation, as discussed earlier. Note that the formation fraction of
the sink from the parent compound can be lower than the combined radioactivity
of bound residues, CO2, and un-identified minor metabolites observed at the end of
study, as the latter can come from degradation of metabolites as well. Thus, parent
compound and its metabolites should be simulated by the SFO-SFO pathway fit
when all the metabolites are included.

Figure 4. DFOP-SFO pathway kinetic fit with all metabolites for Dataset # 1.
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Figure 5. SFO-SFO full pathway kinetic fit with all metabolites for Dataset # 1.

Just as expected, as illustrated in Figure 4, Met A1, as the precursor to Met
A2 and Met A3, was not simulated with a χ2 error of 30%, when all metabolites
were included in the DFOP-SFO full pathway fit. Although the formation fraction
of Met A1 increased from 0.27 (in the DFOP-SFO fit with Stage 1 metabolites
in Figure 3) to 0.53, the mass flow through Met A1 is not enough to account for
Met A1 and its degradation products at the same time. This result clearly indicates
that DFOP overpredicts initial parent compound degradation rate (by capturing the
pesticide residue at Day 0) and the excessive mass of parent compound forced to
the sink is not correctable even when all the degradation products of the Stage 1
metabolite such as Met A1 are included.

In the SFO-SFO full pathway kinetic fit with all metabolites included, parent
compound and all metabolites (including Met A1) are well simulated, with an
acceptable χ2 error of 18% for Met A1 (Figure 5). Note that the formation fraction
for the sink from the parent compound in the full pathway SFO-SFO fit was always
optimized to zero; thus, the sink term for the parent compound was removed in the
final step of optimization (Figure 5). The poor fit to the metabolite Met A3 is
expected due to its low concentration of <5% AR.

The above discussion indicates that the use of SFO for parent compound in the
pathway kinetic fit not only provides acceptable description of parent compound
degradation but also formation of its metabolites. The selection of DFOP for
parent compound, however, fails to predict the formation of metabolites. Thus,
SFO should be considered the more reasonable model for description of parent
compound degradation than DFOP. The acceptable degradation half- life to use
in environmental fate simulations should be the SFO DegT50 of 25.7 days, as the
existence of a slow degradation phase is not supported in the full pathway fit with
all metabolites included.
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The initial sudden drop in the quantity of a pesticide from Day 0 to the next
sampling point seems to be the main reason for the slightly biphasic behavior
of parent compound degradation in this dataset, but it is not accompanied by
the simultaneous formation of the same quantities of metabolites. The biphasic
behavior, as shown by the parent degradation data alone, is likely due to an
experimental artifact, such as the initial quick transformation of parent compound
into non-extractable residue in soil. Thus, the DFOP slow phase DegT50 of 53
days should not be used in exposure modeling.

Microbial Activities

Reduced microbial activities could also be the reason for biphasic degradation
observed in the laboratory studies. Data set # 2 was collected with the same
pesticide as for Data set # 1 but in a different soil. The study period of 365 days was
also much longer than the period of 120 days for Dataset # 1. During this study, the
microbial biomass dropped from 43 at Day 0 to 29 mg carbon per 100 g soil at Day
126, but remained at 28 mg carbon per 100 g soils at Day 365. However, >90%
of parent compound degraded by Day 63. Thus, the impact of reduced microbial
activity on degradation of parent compound and metabolites is expected.

Figure 6. SFO and DFOP kinetic fit for Dataset # 2.

In the SFOfitwithDataset # 2, parent compound degradation is well simulated
fromDay 3 to Day 63 (Figure 6). Visually, the value at Day 0 is slightly missed and
data points in the six sampling points after Day 63 were underpredicted. However,
>90% of parent compound has degraded at Day 63. Thus, the SFO DT50 of 13.2
days can be accepted for modeling, following the FOCUS guidance (1).

In the DFOP fit, the data points at Day 0 and those after Day 63 are well
simulated, with a χ2-test error of only 4% (Figure 6). The DFOP slow phase (k2)
DegT50 of 27 days is nearly twice the SFO DegT50, and it would be selected for
modeling if degradation is considered biphasic.
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To determine if biphasic behavior is due to reduced microbial activities, we
first conducted the full pathway fits with SFO-SFO (Figure 7) and DFOP-SFO
fits (not provided). In the pathway fit with SFO-SFO, all the metabolites were
reasonably well simulated, except for the Stage 1 metabolite with a short DT50
(e.g., Met A1). However, the deviation for the metabolites with a local maximum
- Met A2 and Met A3 is also significant. The metabolites with monotonically
increasing mass over time are reasonably well simulated. Note that the pathway
for Met A1 to Met B2 is theoretically possible and included for improved kinetic
fit.

Figure 7. SFO-SFO kinetic fit with all metabolites included for Dataset # 2.

However, in the DFOP-SFO fit, the kinetic fits for parent compound and all
metabolites were not improved. This is expected as reduced microbial activities
affect not only degradation of parent compound but also metabolites. Thus, we
conducted additional kinetic fits with FOMC-FOMC-SFO. FOMC was used for
parent compound and metabolites with formation peaks observed (Met A1, Met
A2, and Met A3). Note that DFOP for metabolites is difficult in the pathway fit.
Thus, FOMC was selected for both parent compound and metabolites (1). For the
metabolites Met B1, Met B2, Met B3, and Met C1, SFO was still used, as they are
more persistent and impact of reduced microbial activities should be much less
significant.
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Figure 8. FOMC-FOMC-SFO kinetic fit with all metabolites included for
Dataset # 2.

For the FOMC-FOMC-SFO pathway fit for Dataset #2, parent compound and
all metabolites werewell simulated, with χ2-test errors of 4% for parent compound,
5-13% for the metabolites except for Met B1, and 36% for Met B1, as show in
Figure 8. The higher χ2-test error forMet B1 is expected due to the high variability
in replicate samples.

The results in Figure 8 clearly indicate that biphasic behavior of parent
compound degradation in Dataset # 2 is due to reduced microbial activities. SFO
DegT50 should be longer under the influence of reduced microbial activities than
under the normal microbial activities. Thus, SFO DegT50 should be adequate
for description of pesticide degradation in exposure modeling, if SFO fit is
acceptable by the FOCUS criteria. For Dataset # 2, SFO DegT50 of 13 days
should be selected for modeling, as >90% of parent compound has degraded
before the deviation from SFO fit becomes noticeable. On the other hand, the
DFOP slow phase DegT50 of 27 days, which mainly reflects the influence of
reduced microbial activity rather than the existence of slow phase degradation of
a pesticide, should be eliminated for consideration in exposure modeling.
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Aged Sorption

Mechanistically, aged sorption is the main cause for biphasic degradation of
pesticides in soil. If it is confirmed, the DFOP slow phase DegT50 is justified
for the slower degradation of more tightly bound pesticides in soil. However, the
impact of aged sorption on ground water leaching risk can also be simulated as a
higher-tiered option in the regulatory models (4). Thus, whether SFO DegT50 is
adequate for conservative exposure modeling can be examined.

Figure 9. Apparent Kd as a function of time for the three soils as measured in the
aged sorption study (data points), in comparison with those calculated (dash and
solid lines) from the 2-site aged sorption model from degradation studies with

the two soils in Dataset # 3.

In this study, we selected a pesticide which shows significant aged sorption
behavior. The apparent Kd for the pesticide in the three soils with 8-36% clay and
0.9-2.3% OC increases by 2.8-5.3 times in 77 days, as shown in Figure 9.

We reviewed the SFO-SFO and DFOP-SFO kinetic full pathway fits for the
degradation in five soils. We found that in all five soils, DFOP-SFO always provide
improved kinetic fits for both parent compound and metabolites, as compared to
the SFO-SFO fit. In the two soils with different 14C-labeled compound, DFOP for
parent compound is even required for all the metabolites to be simulated. Thus, the
data for these two soils in Dataset # 3were further evaluated to assess the impact
of aged sorption on degradation behaviors.
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Figure 10. SFO and DFOP kinetic fit for Soil 1 in Dataset # 3.

Figure 11. SFO-SFO and DFOP-SFO pathway fit for Soil 1 in Dataset # 3.
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Figure 12. SFO and DFOP kinetic fit for Soil 2 in Dataset # 3.

Figure 13. SFO-SFO and DFOP-SFO pathway fit for Soil 2 in Dataset # 3.
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As shown in Figure 10, in the SFO fit for Soil 1 in Dataset # 3, parent
compound degradation is well simulated, with a χ2-test error of 7%. However,
the value at Day 0 is slightly missed and the last five data points were slightly
but consistently underpredicted. The SFO fit is acceptable by FOCUS criteria;
and SFO DegT50 of 21.9 days can be accepted for modeling. However, in the
pathway fit with SFO-SFO model, the Stage 1 metabolite Met A1 is not simulated
(Figure 11).

DFOP provides an improved kinetic fit to the parent compound data for Soil
1, notably with the data point at Day 0 and the last five data points simulated, with
a χ2-test error of 3% (Figure 10). In addition, all metabolites are simulated in the
pathway fit with DFOP-SFO model (Figure 11). This indicates that degradation is
slightly biphasic in Soil 1, although the DFOP slow phase DegT50 of 28 days is
only slightly longer than the SFO DegT50 of 21.9 days.

Similar kinetic observations were made with Soil 2 in Dataset # 3 but with
a larger deviation from the SFO fit with parent compound data (Figure 12). The
metabolite Met A1 is not described either in the SFO-SFO pathway fit (Figure 13).
However, the DFOP for parent compound not only provides a better fit to the parent
compound data (Figure 12) but also allows both parent compound and metabolites
to be simulated in the DFOP-SFO pathway fit (Figure 13). This confirms that
degradation is also slightly biphasic in Soil 2.

Figure 14. The degradation of the pesticide in Soil 1 in Dataset # 3 as predicted
by the two-site aged sorption model.

To further demonstrate if biphasic behavior indeed arises from aged sorption,
we also fit the parent compound dataset to the two-site aged sorption model
described earlier. The partition coefficient Kd (mL/g) was calculated from the clay
content, as the sorption of this compound is clay-dependent. Moisture content
θ(cm3/cm3) was calculated from 50% maximum water holding capacity used in
the study and a bulk density ρ (g/cm) was also measured experimentally. Thus,
the parameters of Kd, θ, and ρ were fixed during optimization. The two-site aged
sorption model is then fit to the parent compound data for Soil 1 and Soil 2,
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respectively, with the parameters of Nneq, α, and μl set for optimization. The total
mass So at Day 0 of 0.08 μg/g was used to set up the initial condition of modeling
fitting.

Figure 15. The degradation of the pesticide in Soil 2 in Dataset # 3 as predicted
by the two-site aged sorption model.

As shown in Figure 14 and Figure 15, degradation of parent compound in Soil
1 and Soil 2 is well simulated with the two-site aged sorption model, with a χ2-test
error of 2.8% and 1.9% respectively. The Nneq of 1.5 for Soil 2 is higher than the
value of 1.2 for Soil 1, indicating stronger sorption at Site 2 in Soil 2.

In addition, the apparent Kd values for Soil 1 and Soil 2 as predicted from
the aged sorption model are between those for the soils with similar clay (8%)
and organic carbon contents (1-1.4%) used in the aged sorption (Figure 9). This
confirms that slight biphasic behavior results from aged sorption.

Based on this verification, it seems that the slow phase DFOP DegT50 of 28
days for Soil 1 and 63 days for Soil 2 should be selected for exposure modeling,
as they are more or less representative of degradation rate of more tightly bound
pesticide residues. However, aged sorption not only slows down degradation, but
it also significantly increases Kd values. Thus, the impact of aged sorption on
leaching risk as a higher-tier option should be assessed before the SFO DegT50 is
rejected.

The two-site aged sorption model used in this study assumes that degradation
occurs only in the soil pore water, but the regulatory ground water model allows
degradation to occur for the pesticide not only in soil pore water but also bound
to Site 1. Thus, using the equations in the FOCUS guidance (1), we calculated
the values for the parameters of Fneq (i.e., Fneq = Φ (( + ρ Kd)/(ρ Kd)); Φ = (g(1-
g)×(k1-k2)2/(k1 k2)), kt (i.e., kt = g k1+(1-g) k2) and kdes (i.e., kdes =(k1 k2)/(g k1 +
(1-g)k2)) from the DFOP parameters of k1, k2, and g, the partition coefficient Kd,
moisture content θ, and bulk density ρ. Note that Fneq, kt, and kdes are equivalent
to but they are not the same as Nneq, μl and α in the two-site aged sorption model
in this study.
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For Soil 2, the parameters of Fneq, kt, and kdes for the aged sorption model used
in the regulatory ground water model are calculated to be 1.499, 0.0339 (day-1)
(DT50 = 20.5 days), and 0.0222 (day-1). We then calculated PECgwwith this set of
parameters (1/n = 0.94 in the Freundlich equation) with aged sorption considered
in the simulation, SFO DegT50 of 36.5, and DFOP slow phase DegT50 of 63 days
with no aged sorption considered, respectively. The results indicate that PECgw for
the aged sorption is 4 times lower than PECgw for the SFO DegT50 and 10 times
lower than PECgw for the DFOP slow phase DegT50. This result indicates that the
SFO DegT50 is protective of ground water leaching risk and should be selected
as realistic but conservative endpoint for exposure modeling, when the SFO fit is
acceptable by the FOCUS criteria.

Conclusions and Recommendations

It has been shown in this study that biphasic degradation of pesticides in
soil could result from an experimental artifact, reduced microbial activities, and
aged sorption. The causes for biphasic behavior can be clarified by fitting parent
compound and metabolite data into a SFO-SFO, DFOP-SFO, or FOMC-FOMC-
SFO kinetic pathway model. As a result, conservative but realistic degradation
rates of pesticides can be selected for exposure modeling.

The analyses in this study also indicate that a certain degree of deviation from
SFO should be allowed in deriving the degradation rate for exposure modeling,
particularly when the SFO fit is acceptable by the FOCUS criteria (1). The
use of biphasic model such as DFOP as an option to calculate the slow phase
degradation rate, when SFO fit is acceptable by FOCUS criteria, is likely to lead
to unnecessarily over-conservative exposure assessment.
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Chapter 9

Nonlinear Soil Dissipation Kinetics: The Use
of a Set of Simple First-Order Processes To
Describe a Biphasic Degradation Pattern

John R. Purdy*,1 and Mark Cheplick2

1Abacus Consulting Services Ltd., Campbellville, Ontario, Canada L0P1B0
2Waterborne Environmental, Leesburg, Viriginia U.S.A. 20175

*E-mail johnrpurdy@gmail.com.

The analytical results for a pesticide compound in a set of
laboratory soil dissipation studies with a variety of different
soil types from North America and Europe show a range of
behavior from linear simple first-order to a pronounced biphasic
pattern. Using a set of three simple first-order equations,
representing reversible movement between two compartments
in the soil, and irreversible degradation from one of the two
compartments, it was possible to fit the data from all sites.
The output was a set of three simultaneously optimized rate
constants for each soil type, along with the goodness of fit
statistics. The physical interpretation of this model was found
to be unrelated to soil physical properties but associated with
the movement of residues between a compartment in which
the degradation processes occur, and a compartment in which
they do not. The former compartment resembles what has
been called the bioaccessible compartment in soil. This model,
identified as the SFO3 model, is useful for calculation of rate
constants for parent compound and intermediate metabolites,
comparison of lab and field results, correction for changes in
soil temperature or moisture content, identification of outlier
data, and development of parameters for modelling input. The
utility of the resulting rate constants for predictive modelling
for environmental risk assessment depends on the availability
of measurable soil properties that can be used to predict them,
such as bioaccessibility.
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Introduction

The rate of decline of the concentration of a pesticide in the soil environment
after application is an essential factor in environmental risk assessment. It
is a key input value for models that are used to estimate the persistence and
movement of pesticides in the environment. This process can be approximated
by a simple exponential decay equation that is equivalent to the first-order (SFO)
equation for chemical reactions (1, 2). While this remains the main equation
used in modelling, it has long been recognized that it does not give a good fit
to all experimental soil dissipation data sets; much effort has been expended
to find equations that are more generally applicable to both lab and field study
data (2, 3). In this work, the modelling of a series of 11 data sets for laboratory
aerobic soil degradation of chlorpyrifos in soil were used to develop an alternate
approach to nonlinear soil dissipation kinetics and to generate soil dissipation
rate constants for use in PRZM-EXAMS modeling to support environmental risk
assessments of chlorpyrifos (4, 5). The possible use of measured bio-accessibility
to parameterize models such as PRZM/EXAMS for modelling environmental
behavior of compounds is discussed. The potential for analysis of data from field
soil dissipation studies for use in risk assessment was also considered using an
example data set.

The degradation of chlorpyrifos in soil leads to formation of 3,5,6-
trichloropyridinol. The results from a number of studies show that this step can
be either abiotic or biotic, and the rate is 1.7 to 2-fold faster in biologically active
soils (5, 6). Both modes of hydrolysis can occur in aerobic soil. The rate of
abiotic hydrolysis is pH dependent and is faster under alkaline conditions. Under
aerobic conditions, the major terminal degradate of chlorpyrifos is CO2 (6).

The 11 laboratory data sets used in this modelling work were from studies
of the degradation of 14C-chlorpyrifos in soil under aerobic conditions. The
properties of the soils are listed in Table 1. The results from all soils showed good
mass balance. There were some notable effects of soil properties: The originally
reported DT50’s in Table 1 show that the degradation of chlorpyrifos is slower
at low temperatures or in dry soil near the wilting point (10% Field Moisture
Capacity (FMC)). Sterile conditions reduced the production of CO2, but did not
reduce the degradation rate. Overall however, the DT50 values from all soils were
not correlated with soil properties well enough to allow the DT50 to be predicted
for use in modelling. It is possible that the soils that show a faster hydrolysis rate
are those with a microbiome capable of biologically accelerated hydrolysis and
that the biologically mediated degradation is less influenced by pH (5, 6). In this
section, the application of a reversible binding kinetic model is investigated to
evaluate its usefulness and physical significance using the available dissipation
data sets as examples.
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Table 1. Reported DT50 and Soil Properties For Laboratory Dissipation

Soil ID Texture Source pH %OC
MoistureCon-
tent (%FMC)

75%
F.M.C.

SFO
DT50
(days) Comment

Barnes Loam ND 7.1 3.6 75 20.6 22

Catlin Silty Clay Loam IL 6.1 2.01 75 21.02 34

Charentilly Silty Clay Loam FRANCE 6.1 1 40 33.2 95

Commerce Loam MS 7.4 0.68 75 13.5 11

Cuckney Sand UK 6 1.2 40 26.2 111

German Std 2:3 Sandy Loam Germany 5.4 1.01 75 10.8 141

Marcham Sandy Clay Loam UK 7.7 1.7 40 34.2 43

Marcham Sandy Clay Loam UK 7.7 1.7 40 34.2 80 Cold 10°C

Marcham Sandy Clay Loam UK 7.7 1.7 10 34.2 126 Dry

Marcham sterile Sandy Clay Loam UK 7.7 1.7 40 34.2 21 Sterile

Miami Silt Loam IN 6.6 1.12 75 17.92 24

Norfolk Loamy Sand VA 6.6 0.29 75 4.66 102 Very low
moisture

Stockton Clay Clay CA 5.9 1.15 75 25.75 107

Continued on next page.
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Table 1. (Continued). Reported DT50 and Soil Properties For Laboratory Dissipation

Soil ID Texture Source pH %OC
MoistureCon-
tent (%FMC)

75%
F.M.C.

SFO
DT50
(days) Comment

Thessaloniki Loam GREECE 7.9 0.8 40 32.6 46

Tranent Silt loam UK n.r n.r 25 22 12.6
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Kinetic Modelling

The degradation of chlorpyrifos does not fit a simple first-order kinetic
model (6) (See example in Figure 1). There was no evidence of a rapid initial
volatilization under laboratory aerobic soil metabolism test conditions that
would contribute to the initial faster decline in concentration of chlorpyrifos.
Two-compartment kinetics gave an improved fit, but this involves use of an
empirical model with no physical reality assigned to the two compartments. A
mechanistic kinetic model was set up based on the assumption that the nonlinear
behavior is caused by a transition from dissolved parent compound to adsorbed
residues over time (5). The kinetic model consists of 3 compartments as shown
in the schematic diagram in Figure 2:

• 1. M1 -a compartment in which the chlorpyrifos present is immediately
available for biodegradation

• 2. M2 -a compartment in which no degradation occurs (nonbioavailable)
• 3. M3 -a compartment for metabolites and terminal degradation products

Figure 1. Biphasic Degradation of Chlorpyrifos in Aerobic Soil.

Flows of material between these compartments are shown by arrows in the
schematic diagram. These flows are represented by simple first-order differential
equationswith rate constants k. The rate constant formovement into the non-active
compartment is defined as k1. Competing with this process is the degradation of
chlorpyrifos with rate constant km. The third process, with rate constant k2, is the
reverse of the first; the movement from the inactive or non-labile compartment to
the labile compartment from which degradation can occur.
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Figure 2. SFO3 Conceptual kinetic model for nonlinear soil dissipation kinetics.

During the development of this reversible binding model, the M1
compartment was thought to be the dissolved phase and M2 was thought to
correspond to the adsorbed phase in the soil (5).

The FOCUS review describes a similar system for the SFORB model, in
which the two compartments are considered to be dissolved and adsorbed parent
compound respectively (2). The SFORB model is described in terms of two
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differential equations, with a combined algebraic solution. In this work, the
system was described in terms of three SFO equations, with rate constants k1,
k2, and km. No assumption of equilibrium is made. In addition, it was assumed
that the analytical results for the concentration vs time represent the sum of the
material in both compartments M1 and M2, since the analytical extraction method
is known to recover all but the bound residues present in the soil sample. These
three equations are simultaneously optimized to obtain a dissipation curve that fits
the concentration vs time data for each soil. For convenience, it will be referred
to as the SFO3 kinetic model.

A schematic diagram and a list of parameters and equations are provided in
Figure 2. As an overview of how this model works, initially the chlorpyrifos is
readily bioavailable and degradation is limited only by the rate of metabolism (km).
The linear trend in concentration vs time is described by the balance of the three
rate constants k1, k2 and km. The transfer between M1 and M2 is reversible, but
the degradation is irreversible. In systems where km is less than or equal to k2,
metabolism is the rate limiting step and the system behaves like a SFO process.
But if k2 is slower, the proportion of the parent compound that is in M1 will
be depleted and k2 will become the rate limiting step over time. This results in
nonlinear kinetics. Nonlinear behavior can also occur when km is slower than k1. It
is assumed that all degradation, including both abiotic and metabolic degradation
and formation of bound residues occurs from M1. The model was set up using
ModelMaker Version 4, from Cherwell Scientific Software, UK, which is a matrix
based modelling software application of Matlab.

Model Setup

As input data, the measured amount of parent compound was entered as
the sum of the amounts in compartments M1 and M2. In the ModelMaker
software, this is represented by setting the measured concentration as a variable
M, connected to M1 and M2 by “influences” shown in Figure 2 by dashed
arrow lines. The influence is the equation M = M1+M2. The input data is not
log-transformed. For the laboratory results, the first data point concentration value
was entered for the initial value of M1 because the concentration measurements
are relatively accurate and the mass balance was good. The initial values of M2
and M3 were set to zero. Estimated values were manually entered for the rate
constants for the first trial runs based on approximations from the SFO rate of
dissipation given in Table 1. These values were adjusted in some of the trial runs
to be close enough for the optimization routine to converge on a solution for the
input data from each soil. When the model is run, the software first integrates
the set of differential equations using the Marquardt method, and then optimizes
the rate constants selected to provide the best fit for the data. Five integration
methods (Euler, Mid-Point, Runge-Kutta, Bulirsch-Stoer and Gear’s method) are
available in the software. The default Runge-Kutta method was used for all sites
since the differential equations are straightforward. Examples of the parameter
optimization results for the 11 laboratory data sets are shown in Figures 3-5, and
the optimization results are listed in Table 2.

173

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Table 2. Optimization Results and DT50 Values

Optimization Results

Soil
k1
DT50

Estimation
Error

k2
DT50

Estimation
Error

km
DT50

Estimation
Error R2 F p

Degrees of
Freedoma)

Laboratory Studies

Barnes 0.00344 0.00097 0.00245 0.00148 0.0310 0.00110 0.9989 2350 0.104 7

201.5 282 22.4

Catlinb) 0.00315 0.00118 0.00386 0.00133 0.02457 0.00229 0.9904 259 0.695 7

220.3 179.6 28.2

Charentilly 0.529 0.275 0.0573 0.00976 0.0758 0.0290 0.9931 503 0.039 9

1.3 12.1 9.1

Commerce 0.00753 0.00103 0.00702 0.00144 0.0613 0.00125 0.9997 7342 0.718 7

92.1 99.0 11.3

Cuckney 0.529 c 0.0573 c 0.0758 c 9

1.3 12.1 9.1

German 2:3 0.0124 0.01428 0.0211 0.0143 0.007 0.00148 0.9973 918 0.066 7

55.9 32.9 99.1

Marcham 0.0908 0.0211 0.0154 0.00446 0.0789 0.00855 0.9894 374 0.013 10

7.6 45 8.8

Miami 0.0181 0.0164 0.0312 0.0246 0.0395 0.00544 0.9966 737 0.027 7
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Optimization Results

Soil
k1
DT50

Estimation
Error

k2
DT50

Estimation
Error

km
DT50

Estimation
Error R2 F p

Degrees of
Freedoma)

38.4 22.2 17.5

Norfolk 0.0129 0.0046 0.0125 0.00309 0.0122 0.00108 0.9987 1883 0.106 7

53.7 55.5 57

Stockton 0.0031 0.00128 0.0021 0.00219 0.0072 0.00042 0.9987 1871 0.706 7

227.3 338.1 96.7

Thessaloniki 0.0206 0.0116 0.00467 0.0113 0.02256 0.0029 0.9873 310 0.012 10

33.6 148.4 30.7

Field Study

Tranent 0.12515 0.01788 0.01751 0.01407 0.01315 0.0168 0.9847 226 0.000313 9

(Arrhenius) 5.5 39.6 52.7

Tranent 0.1333 0.01859 0.01482 0.01009 0.00878 0.0092 0.9845 222 0.000297 9

(Q10 ) 5.2 46.8 79.0
a) Notes: Total degrees of freedom: Model accounts for 2 degrees of freedom. b) Catlin soil data required weighted least squares regression, all others were
run with Ordinary Least Squares. c) The model did not converge. Values for Charentilly were used and they fit very well.
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Figure 3. Model Results - Barnes Soil.

Application to Field Dissipation Studies

Given that the model gave a good fit to the laboratory data which represents a
closed system at constant temperature, it was then possible to apply it to the field
dissipation study results by assuming that volatility, runoff and leaching losses
were minimal, and adding a daily temperature correction factor based on either a
direct Arrhenius equation (3) or the Q10 method (2).

The schematic diagram and model setups are shown in Figure 6. The results
obtained using the temperature records from a field soil dissipation soil with
chlorpyrifos in Tranent, Scotland is shown in Figure 7 and 8 for the Arrhenius
and Q10 methods respectively. The daily mean temperatures used are shown in
Figure 9. A correction factor to normalize the moisture content is also available
(2), but was not used for this work.
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Figure 4. Model Results - Marcham Soil.

The Arrhenius equation for the effects of temperature T on the rate constant
k is shown in eq 1.

where: kT = rate constant at temperature T in degrees Kelvin.

• ko = frequency factor
• E = activation energy
• R = universal gas constant = 8.315 J mol-1
• e = 2.718

If the rate at one temperature is known, the rate at another temperature can
be estimated if the activation energy is also known. As an initial approximation,
the activation energy, E, was given an approximate value of 40 kJ mol-1 (3),
since this was sufficient to demonstrate the effectiveness of the model. This
activation energy can be measured for a compound of interest by measuring
degradation rates at a series of temperatures. Although the processes involved in
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the reversible movement between compartments M1 and M2 are likely different
from the degradation, a simplifying assumption was made that the same value of
E would apply to all three rate constants. It was originally felt that adsorption
onto an enzyme active site might be similar to adsorption onto a surface, and
this assumption was retained when the compartments were seen as labile and
non-labile compartments. The correction factor A for time t in days after
application was defined as in eq 2 below:

For T1 = 20°C, this gives eq
3:

Since this relationship fails in living systems when the temperature drops
below 4°C or in inorganic systems when the temperature drops below freezing, the
model was set up with timed events to set A = 0 when the mean air temperature
dropped below 0°C and to return to equation 3 when it warmed up again.

Figure 5. Model Results - Charentilly Soil.
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Figure 6. SFO3 Model With Temperature Normalisation Factor.
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Figure 7. Optimized Fit Using Arrhenius Equation For Field Dissipation Data.

With the Q10 calculations, the Correction Factor Q at time t in days after
application is used to normalize the temperature to a standard value, To, typically
20°C (2) as in eq 4 below:

The standard value of Q10 = 2.58 was used (2). Substituting this value and
20 °C in eq 4 and rearranging gives eq 5:

This relationship also fails below 4°C. This was dealt with as described above
for the Arrhenius method.
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Figure 8. Optimized Fit Using Q10 Temperature Correction For Field.

Results From Laboratory Data
The 11 laboratory aerobicmetabolism data sets available for chlorpyrifos were

run in the model. The optimized rate constants with corresponding DT50 and
DT90 values are listed in Table 2. The statistical data for the curve fitting are
included in Table 2. The statistics show an excellent fit to the model in all cases,
except that the data from the Cuckney soil could not be successfully optimized by
computer due to the very brief time for the desorption process to become dominant.
However, the data were very similar to those for the Charentilly soil 3 and the
parameter values optimized in the Charentilly data gave a very good fit for the
Cuckney data (Table 2). The Catlin soil data required weighted least squares
regression; all others were run with ordinary least squares optimization. Some
of the p values indicate that additional data points would improve the goodness of
fit.

The excellent visual fit to the data throughout the soil types and climatic
conditions is illustrated in Figure 3-5. These graphs exemplify soils in which the
onset of the slower phase of dissipation occurred after approximately 60, 20 and
<10 days respectively.

181

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



As noted above, our first assumption was that the nonlinear behavior of
chlorpyrifos is caused by a rapid dissipation of residues from soil pore water
followed by a slow dissipation phase in which the rate of degradation is limited
by the rate of desorption i.e. that in Figure 2, M1 corresponds to the dissolved
phase and M2 to the adsorbed phase. The graphs in Figure 3-5 include lines
for the total amount of parent as well as the proportions in M1 and M2 and it is
apparent that the slow phase corresponds to the rate of decline of concentration
in M2 after the residues in M1 are depleted, which fit the assumption very well.
However, the time scale for the change to the slower degradation process is much
longer than the time taken for soil adsorption and desorption processes to reach
equilibrium, which is on the scale of hours (7). In the data illustrated in Figure 1,
the transition takes more than 30 days.

From Figure 1, the ratio of k1 and k2 appears to be related to the equilibrium
adsorption coefficient, Kd (3), but the system is not at equilibrium. Since Kd
or its organic carbon corrected version Koc are expected to be related to soil
properties (3), considerable effort was expended to find a relationship between
the soil properties in Table 1 and the optimized values found for k1 and k2, or
the ratio of these values. Such a relationship could be used to predict values
of these parameters for modeling soils in a continent-wide exposure assessment
(5). However no such relationship was found. For example, the proportion of
parent compound that remains in compartment M1 after 20 days is close to 50%
in Figure 3. From the value of Koc, which ranges from 973 to 31000 (5), the
proportion in the dissolved phase should be very small and consistent with the lack
of leaching movement observed for chlorpyrifos. It is clear from high proportion
of residues in both M1 and M2 that the material in these compartments does not
move with soil pore water. Therefore, M1 and M2 cannot be interpreted as the
dissolved and adsorbed compartments in the soil. They are instead, bioavailable
and nonbioavailable compartments (8) and in addition, abiotic hydrolysis occurs
only from M1. To represent this, the compartments were called labile and non-
labile. It follows that the half-life that is relevant for modelling should be obtained
from km, which is the rate of actual elimination of the parent compound when it is
in a labile form.

Considerable effort was also expended to find a way to estimate the rate
constant, km, from the properties of soils so that modelling could be done on a
wider range of soils. The values of km did not show a correlation with soil pH but
as was found for the reported SFO DT50 values (5), the results could be divided
into two groups. The group including the German Standard soil, Cuckney,
Stockton and Thessaloniki have longer DT50 values and have a significant
correlation to pH. The contribution from abiotic hydrolysis, which is sensitive to
pH may be larger in these soils, while the soils with shorter DT50 values have
more biological degradation, which occurs where pH is regulated inside living
cells. This remains unproven since the grouping by the DT50 vs pH in Table 1
and 2 are similar, but not the same. From the results in Table 2, the SFO3 model
was equally successful in handling both groups of soils, and this provides further
support for the assumption that degradation, including both transformation and
formation of bound residues, takes place only from M1.
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The average and Std. Dev. of DT50 values based on km were 35.4 days
and 33.9 days respectively. The upper 95% confidence limit of the mean DT50
was 58.9 days. This value tracks the bioavailable portion of the residues in soil
that would be toxic for risk assessment purposes, and could be used in worst case
modelling for most soil studies.

To give rise to nonlinear kinetics, there must be at least one compartment in
the soil from which degradation does not occur and another from which it does.
A second assumption is based on the recognition that measured concentrations in
soil are not the same as the concentration available for biotic or abiotic reaction;
and to have analytical recoveries approaching 100%, the analytical results must
represent the sum of both compartments. A third assumption, that the applied
material is initially in the labile compartment, is based on the fact that the applied
material moves into the soil in the pore water that is on the surface of every
particle. These assumptions are consistent with the independently developed
concepts of bioaccessibility and the distinction between accessibility and chemical
activity in the soil. It has been shown that accessibility is correlated to the rate of
biodegradation, but not to the partition or movement of materials in the soil, which
depend on the balance of the activity in the various soil components and that for
some compounds, the accessibility can be measured. (9–11). While Mayer and
Reichenberg proposed that accessibility operates at the macro level of uptake
and biodegradation, it is evident that for bioaccumulation to occur, they also
operate within the living organism and even within the cell. It may be possible to
use measured accessibility to parameterize models such as PRZM/EXAMS for
modelling environmental behavior of compounds.

The proposed SFO3 model uses only simple first-order kinetics, but explains
the nonlinear kinetics over a wide range of data sets. The model reduces the
number of assumptions required and simplifies the mathematics; the adsorption
and desorption equilibrium, which operates on a much shorter time. It provides
insight into processes that drive the changes in degradation rate and bioavailability
of the active ingredient with time.

There are some cautionary notes for the use of the model. For data sets such as
Charentilly where the nonlinear transition occurs soon after application the SFO3
model approaches a simple first-order model. Consideration of the schematic
diagram shows that it is also possible to approach SFO kinetics if the nonlinear
transition occurs late in the time interval. This shows that there may be more than
one optimum in the regression, and care is needed to avoid unrealistic values of
the three rate constants when running the model. The data from the Cuckney site
did not converge on a solution in the ModelMaker software. This could be caused
by insufficient data and degrees of freedom. From a visual assessment, the values
appeared close to those from Charentilly and a good fit to the data was obtained
using the rate constants from the latter site.
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Field Dissipation Study Modelling Results

Among the field soil dissipation data sets available for chlorpyrifos, the data
from a site in Tranent Scotland had the most sample dates and the most useful
range of temperatures to illustrate the use of the model. The rainfall data showed
no significant dry periods, so the moisture content correction was not done. The
set-up for such a calculation is a simple extension of the set-up for the temperature
correction (See schematic and model set-up in Figure 6). Both the Arrhenius
temperature correction and the Q10 calculation gave an optimized initial total
concentration of 111.2% relative to the planned application rate. With this initial
value the optimizedDT50 for degradationwas 5.3 days in the faster phase followed
by 66.0 days in the slow phase. The corresponding values for the Q10methodwere
4.9 days and 69.3 days. The regression coefficients were above 0.98. Further
details are listed in Table 2. The dissipation rates were faster than the average
under laboratory conditions, which indicates that modelling based on laboratory
rate constants would be conservative. The goodness of fit can also be seen in the
dissipation graphs in Figure 8 and 9. These graphs also illustrate the ability of the
model to identify outlier data points and other inconsistencies in nonlinear data
sets. For an example of an outlier, see the data for Day 273 in Figure 7 and 9.

Figure 9. Daily Mean Temperature Data From Tranent, Scotland.

Conclusions

A kinetic model was set up using 3 simple first-order equations with reversible
movement of parent compound into a compartment in which degradation does not
occur. Residues in both labile and non-labile compartments are readily extractable
for analysis, but are not mobile in the soil and are not related to the adsorption/
desorption processes.
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The modelling results show that such a conceptual model accounts for a very
high proportion of the variability of the data and explains the nonlinear behavior of
chlorpyrifos without making assumptions about equilibrium or other relationships
among the rate constants.

The model fit the concentration vs time data from aerobic soil dissipation data
for 14C-chlorpyrifos in 11 different soils very well, but the resulting rate constants
were not correlated to physical soil properties and could not be predicted from
these properties as was found with the rate constants originally reported for these
soils.

The degradation rate from the bioavailable compartment is the first-order rate
constant to be used for environmental fate modeling. The lack of degradation,
either biotic or abiotic, in this compartment shows that the material in it is not
bioavailable and non-bioavailable residues are not hazardous.

The SFO3 model is versatile and related to the physical behavior of the
compound in the soil environment. It provides a good fit to nonlinear concentration
versus time data. It can be used for lab or field data and corrections for soil
moisture or temperature can be applied. It is possible to include timed events
such as multiple applications. The applications for SFO3 include calculation
of rate constants for parent and intermediate metabolites, comparison of lab
and field results, correction for changes in soil temperature or moisture content,
identification of outlier data, and development of parameters for modelling input.
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Chapter 10

Statistical Means for Proper Determination
of Kinetic Half-lives

Scott H. Jackson*

BASF Corporation, 26 Davis Drive,
Research Triangle Park, North Carolina 27709

*E-mail: scott.jackson@basf.com. Phone: (919) 547-2349.

In the NAFTA regulatory community, a consistent methodology
for estimating dissipation times for environmental fate data
is not applied. This work presented here demonstrates that
the inappropriate use of pseudo-first-order degradation model
can result in inaccurate estimates of soil degradation rates.
A statistical tool is presented that can be used to identify
an appropriate statistical model to best describe a particular
environmental fate dataset. Methods are also proposed to
identify if transforming datasets are required to a more
appropriate scale. Additionally statistical testing procedures
have been proposed to select the appropriate model within that
scale. Results from this work indicate that, unless the proposed
diagnostic and statistical procedures are used, inaccurate
estimates of dissipation times may result.

Introduction

The regulatory community requires that pesticide manufacturers conduct and
submit a series of physical-chemical and environmental fate studies in support
of the registration granting process. The studies submitted allow evaluation of a
molecule’s behavior in various environmentally relevant matrices such as soil,
water, and sediment. The studies are intended to allow the quantification of
different degradation mechanisms in the matrices due to the influences of both
biotic and abiotic processes. One of the most important endpoints generated
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from the studies is the determination of compound degradation time, or the time
required for concentration to decline in the various study matrices. Normally the
time required for 50% of the compound to dissipate or degrade (the DT50) is of
primary interest, but other endpoints may be of interest such as the time required
for 90% of the molecule to dissipate or degrade (a DT90).

More recently there have been shifts in regulatory decision processes toward
a more hazard-based process to categorize persistence. Hazard-based persistence
decisions compare a study-based endpoint to a pre-determined criterion or trigger.
For example, a soil degradation half-life of greater than 180 days might be judged
by a hazard-based categorization as a persistent molecule, while a risk-based
method would consider other environmentally relevant facts before suggesting
the molecule was persistent. While hazard-based regulatory decisions allow for a
more readily understood decision, the assessments typically provide a superficial
characterization assessment.

One problem for users of various regression approaches is the implementation
of a regression fit criterion. Is the coefficient of determination a good regression
selection criterion? Is the coefficient of determination plus the examination
of residuals a good selection criterion? Are there other more statically based
methods that are better for selecting regression approaches? The goal for looking
at fit criterion is eliminating user bias, and to ensure the best description of
the data. It has been pointed out in the literature (1) that inaccurate first-order
kinetics are often used to describe data. The typical cost of an environmental
fate laboratory study is about $200-400 thousand dollars. The goal for any type
of calculation should be to reflect the data being characterized as accurately
as possible. In the regulatory community (regulated/regulator), initial attempts
to specify an appropriate regression model selection has been based on the
coefficient of determination, r2 or R2. In the text Organic Chemicals in the Soil
Environment (2), Hamaker proposed a series of empirically based equations for
determination of half-lives in a pseudo systematic approach.

This pseudo-first- order (PFO) equation has historically been used as a first
attempt to analyze data sets. This familiar equation is defined as

where Ct is the concentration at time t, C0 is the initial concentration, and k
is the proportionality coefficient. Unfortunately, many researchers using this
approach stopped regression analyses if they obtained an r2 or R2 value that
seemed reasonable. The Hamaker equation in the log scale can be written as

If the data are linear in the log scale, equation 2 may be an appropriate model
for that scale. However, few current generation agrochemicals exhibit linear
degradation patterns in the log scale.
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As a result, Hamaker (2) proposed a power-rate model that allowed a better
description of nonlinear data sets as:

where α is an unknown parameter, and the other parameters are defined as in (eq.
1).

Timme–Frehse–Laska Equation

In a similar approach to Hamaker, Timme et al. (3) proposed six functions that
were also empirically based. However, they took the additional step of suggesting
that the choice of the equation should be based on the value R2. The approach
prescribed using the Timme equations was to start with a linear equation, and then
to progress to increasingly nonlinear equations in sequence until an R2 value of 0.7
was reached in an effort to improve fit. While this approach was useful in that it
added the start of a systemic framework, the coefficients of determination cannot
be used to determine the adequacy of a model.

However, choice, as discussed previously, was based on an arbitrary decision
to use a coefficient of determination of 0.7. Some in the regulatory community
have suggested that all data set analysis should be based on a rate-constant (t½)
determination. It is important that a clear distinction be made between DT50 and
t½ values. A DT50 implies that the value describes the time required for 50% of the
starting concentration to dissipate or degrade. A t½ result implies that the number
is derived from a rate constant, which may or may not describe where 50% of the
starting concentration has dissipated or degraded.

However, one problem with this assumption is that few data sets are actually
described well by a linear relationship in a natural or log scale. This would mean
that most data sets characterized by the use of a rate constant calculation are poorly
described. This mis-description is especially a concern when a compound is
classified for persistence for example. Additionally, when the half-life is a model
input, this miss-characterization is carried through to predicted environmental
exposures. Mojasevic et al. (1) and Leake et al. (4) have pointed out that when
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examining factors influencing degradation half-life values, inaccurate first-order
kinetics are often used to describe the relationship. The goal for any type of
calculation should be to reflect the processes being characterized as accurately
as possible. Further details regarding the implications of using DT50 and t ½
approaches may be found in Massey et al (5).

As researchers continued to examine the use of regression models for use in
describing data sets, they were not satisfied with empirical fits to data with little
statistical basis.

Gustafson-Holden Equation

One approach, which was theoretically based and worked computationally
well, was proposed by Gustafson and Holden (9). The Gustafson–Holden equation
(eq. 7) was a unique approach that allowed both linear and nonlinear data sets to
be solved since it is based on the flexible gamma distribution. The equation was
described by the authors as being first-order and solved for three unknowns (C0,
α, and β):

Using a log scale, this equation (8) can be written as:

Goodness of Fit Testing

Since historically in a regulatory context there has not been a single
systematic justification for applying regression models to data sets appropriately.
The question remains, what is an acceptable means for judging goodness of
fit. Basic statistical conventions would suggest evaluating the coefficient of
determination (r2 or R2). Next an examination of residuals should be conducted.
However, examining residues and acceptance of the coefficient of determination
is subjective. An overused axiom in science is the principle of parsimony or
Occam’s Razor. This fundamental principle of the scientific method roughly states
that the simplest plausible explanation should be used in any scientific endeavor.
Or Occam’s razor is used to decide between “theories” that have already passed
theoretical scrutiny tests, and which are equally well supported by evidence. This
axiom would argue for the use of residuals and the coefficient of determination.
However, a more quantitative approach was desirable.

The goal of this presentation is to propose a method whereby regression
models may be correctly applied and evaluated for goodness of fit.

190

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Table 1. Example Dataset with Two Replicate Samples Per Sampling
Interval. The Observations Are Presented as a Percent of a Nominal Applied

Dose.

Days Observation (% of Dose)

0 102.5

0 96.7

1 78.6

1 71.2

3 69.4

3 51

7 42.7

7 41.5

14 28.5

14 22.4

28 18.6

28 14.3

42 10.3

42 8.4

61 6.3

61 5.6

91 6

91 2.8

118 3

118 2.9

Statistical Considerations for Model Selection

The nature of environmental fate data requires that an appropriate regression
model be selected and simultaneously an appropriate transformation function
should be selected so that the data is in the appropriate scale. While this
manuscript will not go into the selection of transformation functions, it has been
shown that log or natural log transformation is typically used with environmental
fate data. However, the regression model and data scale (transformation) should
be selected so that the residuals do not exhibit any systematic behavior. The
variability of the residuals should be similar across the time axis. The data also
need to be normally distributed which is especially important if an F-test is to be
used. When comparing several regression models for fit to a data set, one very
useful method is the application of an F-test. A description of an appropriate
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F-testing procedure has been described by Aldworth and Jackson (6) and therefor
will not be explained in this paper. However the implementation of the method
will be used to determine if the selected models are descriptive.

Use of Visual Inspection

An analysis of data is incomplete without a visual inspection of data.
Normally, a plot of the raw data should be used to get an initial idea of which
approach should be used. Fitted values should be plotted against the data as a
check for goodness of fit. Residuals should be plotted to check for goodness of fit
and to evaluate the appropriateness of transformation function or scale used.

Example

As an illustration of the principles of analysis, an example dataset will be
used and analyzed. Additionally, an Excel tool has been developed for performing
various determinations including F-tests. This Excel tool can be found at http:/
/www.stone-env.com/agchem/agres.php (7). The time scale in the example are
days after dosing (DAT) and are plotted as the X axis, while observed percent of
dose will be plotted as the Y axis. Similarly they shall serve as the corresponding
X,Y pairs for analysis (Table 1).

Normally the first step in analysis would be to simply regress the data.
The results of regressing both the simple regression and the G-H equation are
presented.

Figure 1. A presentation of the pseudo first -order and G-H fits to the data. (see
color insert)
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From an examination of Figure 1, it is evident that the G-Hmethod intersected
the data points reasonably well, while the pseudo-first-order regression fit did not.
Surprisingly, the r2 for the pseudo-first-order regression is 0.96, while the R2 for
the G-H regression was 0.98. This example points out two concerns when fitting
regressions to data A) relying on a coefficient of determination, and B) failing
to critically examine the regression fit to data. If an examination is made of the
residuals in Figure 2, it is also evident that the simple regression did not describe
the data well since the residuals are not distributed either side of the mean (zero
line).

Figure 2. Presentation of untransformed residuals for both regression models.
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However if the analyst simply looked at 50% or 90% dissipation times (DT),
they might be satisfied with the results. The DT50 for the pseudo-first-order (PFO)
and G-H were 4.8 and 7.4 days respectively. The DT90 values were 24.5 and 46.3
for the PFO and G-H regressions respectively. The next step typically performed
is to log transform data that is not fully linear.

Figure 3. Presentation of transformed residuals for both regression models.

In Figure 3 compared to Figure 2, the GH model does restrict residual scatter
after data transformation (or the residuals are equally distributed around themean).
The DT50 for the PFO and G-H were 24.1 and 6.0 days respectively. The DT90
values were 79.9 and 43.2 for the PFO and G-H regressions respectively.
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Figure 4. A presentation of the pseud-first- order and G-H fits to the data log
transformed. (see color insert)

From an examination of Figure 4, it is evident that the G-H method
intersected the data points reasonably well, while the simple regression fit did
not. Surprisingly, the r2 for the pseudo-first-order regression is 0.88, while
the R2 for the G-H regression was 0.98. This example points out concerns
comparing several models with different data treatment methods. If we simply
examined r2, then a conclusion might be that the PFO method with untransformed
data was a good approach. Examining residuals helps to inform a decision
between models and data transformation methods. Examining the coefficient
of determination and DT50 results might seem a good selection criterion when
judging between regression models and data treatment. However confoundingly,
it appears that transforming the data made results worse for the PFO model,
while marginally improving the GH model result. After an examination of
results comparing transformed data and models, a great deal of subjectivity could
bias the proper basis for choosing a model and data treatment. However, the
implementation of an F-test for selecting models would help decisions when
comparing multiple models and several data treatment methods. Since there
is a desire for a more robust decision process for selecting models, the use of
an F-test metric is appealing. A useful statistical testing procedure to select
between two competing models using the F-test has been well described (8).
Greater statistical detail on using an F-test for regulatory study data analysis
can be found in Aldworth and Jackson (6). To help implement and understand
the F-test process, a Microsoft Excel application has been developed that
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calculates the statistics discussed in this presentation. The tool can be found at
URL http://www.stone-env.com/agchem/agres.php#agdownload (7). There are
versions for Excel 2003, 2007, and 2010.

Table 2 is a summary of the various combinations possible using two models
and a transformation method.

Table 2. A Summary of Statistic Results Based on Various Analysis
Combination

Goodness-of-fit test
log-transformed

data
untransformed, original

data

PFO GH PFO GH

FLOF 8.94 0.23 4.36 0.56

P 0.001 0.964 0.0166 0.769

r2 or R2 0.878 0.982 0.960 0.983

Compare Models

F for model comparison 101.75 37.74

P for model comparison 1.36E-08 1.08E-05

PFO GH PFO GH

DT50 24.1 6.0 7.4 4.8

DT75 48.1 16.6 14.7 14.8

DT90 79.9 43.2 24.5 46.3

Confidence Limits

DT90LCL – 33.3 – –

DT90UCL – 53.1 – –

Summary

There are straightforward steps for evaluating a model or several models
as predictive tools in kinetic analysis. The first step is the resulting coefficient
of determination. Is the r2 or R2 high enough? Next step would be an ocular
examination of the regression and its fit to the data. As observed with the PFO
regression and the transformed data, the coefficient of determination seems
reasonable but the fit to data was poor. The next step in evaluation is to look at
the plot of residuals. The problem with looking at the coefficient of determination
and residuals is that they are both analyst subjective. It has been presented that
the coefficients of determination may seem adequately descriptive (numerically
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high) but still can be a poor description of the data. However an F-test provides
a statistical basis without bias for selecting between competing models and data
treatment methods. To further aid readers and users in their understanding of
the F-test methodology, a Microsoft Excel calculator has been developed and is
publically available for download.
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Pesticide sorption behavior is a complex process. The
importance of extremely slow retention and release has
superseded the notion that sorption of pesticides to soil is an
instantaneous and reversible process. A fraction of sorbed
pesticide is also often reported to bind irreversibly to the
soil matrix. Irreversible sorption has potentially significant
implications for reducing pesticide mobility and bioavailability.
However, an accepted experimental method with the ability to
quantify irreversible sorption does not exist due to procedural
difficulties in identifying slowly reversible and irreversible
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fractions relevant at the field scale. Use of isotopes, generally
14C, is a promising means of quantifying irreversible sorption
and providing crucial parameters and data for pesticide fate
modeling.

Introduction

Sorption is recognized as a key mechanism controlling the distribution of
pesticide between solid and aqueous phases in the soil environment. Sorption
thus controls both the amount of pesticide available for leaching and the amount
available for uptake by target and non-target organisms (1). The study of
sorption itself however, provides complex experimental challenges. Sorption and
desorption are dynamic processes and are often observed to increase and decrease
respectively as a function of contact time with the soil. The sorption kinetics
controlling these time-dependent interactions typically involve multiple sorption
domains ranging from instantaneous to extremely slow and months or years may
be required to approach true equilibrium (2). There is also considerable evidence
to suggest that pesticide sorption to soil is only partially reversible. Pesticide
desorption can often be observed to ultimately occur at a negligible rate, thus
leaving behind a fraction of sorbed pesticide that is apparently desorption-resistant
(3). This fraction is described by a range of terms within the literature, of which
non-extractable residue, bound residue or irreversible sorption are the most
commonly used.

The ability to quantify the amount of pesticide available for desorption and
that which is desorption-resistant would significantly improve our understanding
of pesticide sorption-desorption in soil as well as the power of models for
predicting pesticide fate. At present however, a standard procedure to quantify
readily-desorbable, slowly-desorbable and non-desorbable pesticide does not
exist. Northcott and Jones (11) were the last to review the state-of-the-art
regarding experimental approaches and instrumental methods used to quantify
and/or characterize fractions of non-desorbable pesticide. Classically, exhaustive
extraction techniques were used with the sole aim of recovering as much of the
pesticide as possible (12). The definition of non-desorbed pesticide proposed
by Führ et al. (13) stipulated that “the extraction method must not substantially
change the compounds themselves or the structure of the matrix”; methodology
has since seen a shift towards more natural methods of extraction and the use of
isotopes, generally 14C (3, 11).

The first part of this chapter reviews the nomenclature used in the literature
to describe desorption-resistant pesticide and discusses mechanisms of formation.
The second part discusses experiments and modeling approaches used to quantify
irreversibility in pesticide sorption-desorption in soil.
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Nomenclature: Bound Residues, Non-Extractable Residues,
and Irreversible Sorption

The descriptive terms “free” and “bound” residue are used to differentiate
between pesticide residues that can be readily extracted from the soil and those
that remain resistant to such an extraction (7). The most widely used definition
provided to date was proposed by Roberts et al. (8) who described non-desorbable
or “bound” residue as“chemical species originating from pesticides, used
according to good agricultural practice, that are unextracted by methods which
do not significantly change the chemical nature of these residues.” Although
this definition has been modified many times, it has not changed substantially
(4). The most notable addition was provided by Calderbank (9) who introduced
the concept that the environmental significance of non-desorbed pesticide hinges
on its bioavailability and biological effect, rather than the extent to which it can
or cannot be extracted or released by chemical methods: “clearly the important
matter is not so much how the residue is defined but the question of its biological
availability”. The last agreed definition for non-desorbable pesticide was
provided by Führ et al. (6) who also considered the structure of the soil matrix:
“Bound residues represent compounds in soil, plant or animal, which persist in
the matrix in the form of the parent substance or its metabolite(s) after extraction.
The extraction method must not substantially change the compounds themselves
or the nature of the matrix.”

Although the aforementioned definitions of “bound” residues have been
widely acknowledged, non-desorbable pesticide residue is described by a variety
of terms within the literature; therefore some clarifications will be made as to their
use and meaning. Firstly, the term non-extractable residue (sometimes referred to
as unextractable residue) is used commonly throughout the literature. Use of the
term non-extractable residue reflects its operationally-defined nature by which
the majority of non-desorbable pesticide residues are measured experimentally
(1, 5, 10–12). Thus, considering that the definition of a bound residue relates
to the fraction of sorbed pesticide resistant to extraction, a bound residue is
a non-extractable residue (1). Conversely, a non-extractable residue is not
necessarily a bound residue. The fraction of non-extractable residue that has
been quantified is entirely dependent on the experimental conditions, method
and solvent used to perform the extraction and obtain the reported results (7).
The decision to discontinue a given extraction is usually an arbitrary choice
and additional amounts of the bound chemicals can normally be recovered by
increasing the time or intensity of extraction (13). The classification of compound
residues by these definitions can be misleading due to the range of methods used
to quantify such fractions (4). Thus, the non-extractable fraction can result in
overestimation of the true bound residue fraction due to its operationally-defined
nature.

Secondly, the term irreversible sorption is used in certain circumstances.
To further complicate matters numerous variations of this term exist within the
literature, the meanings of which are essentially equivalent to that of irreversible
sorption, though worded differently (Table 1).

201

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Table 1. Variation for the term irreversible sorption in the literature

Terminology used Reference

Irreversibly sorbed
Irreversibly bound
Irreversible behavior
Irreversibility in pesticide adsorption-desorption
Irreversible sites

Celis and Koskinen (14)

Sorption irreversibility
Irreversible sorption behavior
Non-desorbable
Irreversible component

Celis and Koskinen (15)

Irreversible compartment Chen et al. (3)

Irreversible binding Burgos et al. (16)

Desorption irreversibility Yu et al. (17)

Irreversible effects
Desorption resistant

Sander and Pignatello (18)

Use of the descriptor “irreversible” implies that the sorbed pesticide is
irretrievably bound to the soil matrix, i.e. it can never be recovered. In
some studies however, the authors have instead defined their own terms. For
instance, Sander and Pignatello (19) have used the term irreversible sorption
in a thermodynamic context “that does not necessarily imply an irretrievably
bound state.” In their later paper Sander and Pignatello (18) explain that “the
term “irreversible” does not necessarily imply the generation of irretrievable
(unextractable) residues, although it does not exclude this possibility.” What
is clear, is that the inconsistency in choice of descriptors, and study-dependent
definitions of irreversible sorption, limits the ability to make direct comparisons
between studies and results in confusion or misinterpretation of their meaning.
There is a need, therefore, for the standardization of the terms and definitions
used to describe desorption-resistant pesticide residues.

Typically, the term irreversible sorption appears to be used in circumstances
where a permanent change in the adsorbate/adsorbent system is proposed i.e.
a mechanical or structural rearrangement (20). For instance, Yu et al. (17)
consider the highly irreversible sorption of pyrimethanil to soils amended with
high-microporosity biochar to be the result of adsorption and desorption occurring
from different physical environments. Chen et al. (3) believe the hysteresis
phenomenon observed in their study was partially caused by the irreversible
sorption (by physical entrapment) of pentachlorophenol to lipids. Furthermore,
Sander and Pignatello (18, 19) have discussed in detail the irreversible deformation
of micropores by the sorbate such that adsorption and desorption follow different
pathways; a mechanism thought to result in irreversibility in pesticide sorption.

The following definitions are provided for the meanings of the terms used
in this chapter: (i) the term irreversible sorption is used to refer to pesticide
residue that cannot be recovered from the soil matrix and is thus not available for
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degradation or to soil microbes; (ii) the term non-extractable residue is used to
define the fraction of pesticide resistant to desorption by the chosen extraction
method i.e. extractable where it is possible to use a harsher extraction conditions;
and (iii) the term bound residue is used to describe the irreversibly sorbed fraction
of pesticide in addition to a fraction of non-equilibrium sorbed pesticide, which
may not have been extracted within the time-scale of the experiment. Irreversible
sorption and bound residues are hence differentiated in terms of potential for
remobilization. Irreversibly sorbed pesticide will never be released from the soil
matrix under any circumstance, and may be thought of as essentially removed
from the environmental system. Bound residues are not considered permanently
bound. Thus, using the term non-extractable residue or bound residue suggests
that the potential for remobilization of the residue is unknown. This is the result
of the procedural difficulties in reliably establishing desorption endpoints.

The formation of soil-bound pesticide residues has gained significant
attention for its importance for the fate and transport of organic contaminants
in environmental systems through limiting the bioavailability of pesticides in
surface soil systems and having the potential to reduce pesticide mobility in
the environment (21). As a consequence, bound residue phenomena have been
reviewed in detail on several occasions (1, 8, 11, 22–25). The subject is explored
in a greater detail in the following sections.

Formation of Bound Residues: Abiotic and Biogenic
Mechanisms

The key mechanisms involved in the formation of bound residues are covalent
bonding and physical entrapment (21, 26–28). Both mechanisms of formation
may involve the parent molecule and/or its metabolite(s). Covalent bonding and
physical entrapment are the direct result of abiotic interactions (i.e. physical and
chemical binding). However, biotic interactions (microbial action) have the ability
to indirectly or artificially augment the formation of bound residues.

There is strong evidence in the literature to suggest that microbial activity
plays a significant role (via biodegradation) in bound residue formation. The
majority of this information comes from studies that have tried to identify the
parent compound or metabolite(s) by applying different degradation techniques
(4). For example: (i) Reuter et al. (29) found that the formation of bound
residues for the herbicide 14C-isoproturon was largely dependent on the prior
degradation of 14C-isoproturon to the metabolite 4-isopropylaniline; (ii) Wang
et al. (30) observed that degradation of the parent compound (new herbicide
ZJ0273) was accompanied by formation of bound residues and mineralization
to CO2; and, (iii) Chilom et al. (31) found that bound residue formation of
naphthalene was low, but formation was 5-20 times higher for its primary
metabolite cis-naphthalene-1,2-dihydrodiol.

It is well known that the presence of hydroxyl and carboxyl groups greatly
enhances the chemical reactivity of metabolites, and thus their ability to form
bound residues (24, 32). In addition to this effect, it is also possible for the soil
microbial community to influence soil bound residue formation via another route.
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Microorganisms degrading parent material are also able to assimilate the derived
carbon into their cellular components (e.g. fatty acids and amino acids), which in
turn becomes stabilized within the soil organic matter (33). Thus, a proportion of
soil bound residue is likely biogenic in nature. A recent publication by Nowak et
al. (33) showed that after 64 days of incubation, 44% of initially-applied 2,4-D
had been converted to microbial biomass and finally to biogenic residues. Since
such residues would not pose any ecotoxicological hazard and this clearly has
important implications for risk assessment. Biogenic residues are not considered
in the definition of bound residues and their exclusion may lead to overestimation
of the risk bound residues pose to the environment (33, 34).

The effects of microbial activity may also depend on the pesticide in question.
Irreversible sorption has been reported to occur in a number of studies in which
sodium azide (NaN3) was applied tominimize bacterial growth and biodegradation
(3, 17, 18). As no degradation was found to occur during the experimental time-
frames of these studies, this suggests that the fractions of irreversible sorption
reported refer only to parent material. All three studies attributed the occurrence of
irreversible sorption to some form of physical entrapment or matrix deformation,
such that adsorption and desorption were occurring to and from different physical
environments. However, Chen et al. (3) and Yu et al. (17) used only very short
adsorption and desorption times (24 and ≤ 96 hours, respectively), suggesting that
the irreversible fractions observed are unlikely to be truly irreversible. Sander and
Pignatello (18) used considerably longer adsorption (140 days) and desorption (87
days) periods, however they concluded that although a small fraction of pesticide
desorbs extremely slowly, it is too early to conclude that it is permanently trapped.
Therefore, this evidence suggests that at this stage it is necessary to include both
parent and non-parent materials in the definition of bound residues. As bound
residues can only be quantified using 14C-labelled compounds, little knowledge of
their chemical identity is ever revealed (23, 34). Therefore the chemical identity
of bound residues is still uncertain as is their irreversible status. Relative to the
parent material, non-parent material may be more likely to take part in similar
irreversible binding reactions, although this will depend on the chemical structure
of the pesticide in question.

Experiments To Quantify Irreversibility in Pesticide
Sorption-Desorption in Soil

The study of irreversible sorption behavior presents complex experimental
challenges. Quantifying irreversible sorption first requires identifying the fraction
of pesticide taking part in slowly reversible (non-equilibrium or kinetic) sorption,
ideally by methods that do not result in an operational definition or alter the
structure of the soil matrix. Quantification of the slowly reversible fraction also
typically requires prohibitive experimental time-frames to be observed in order
to reach desorption endpoints. Secondly, degradation of the parent material is
a further complicating factor due to the protracted time-scales often involved,
and must be measured in order to generate an accurate mass balance. There
is no scientific consensus that recognizes a standard experimental method to
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address these complex experimental challenges. An approach with the ability
to differentiate between the two sorption processes would be a valuable tool
for improving the accuracy of pesticide fate models and development of such a
method has been the subject of much research and discussion.

Experimental methods and techniques to quantify and/or characterize
non-desorbed pesticide residue have been discussed in detail by Northcott and
Jones (4). The authors categorized the techniques into the following groups:
(i) quantitative methods e.g. solvent extraction procedures that aim to extract
pesticide residues from the soil and provide numerical estimates of the irreversible
fraction; (ii) diagnostic methods e.g. electron spin resonance (ESR), fourier
transform infra-red (FTIR) and nuclear magnetic resonance (NMR) that aim
to qualitatively determine the nature of bound residue interactions rather than
the amount; and (iii) indirect experimental methods e.g. hydrolysis methods,
derivatisation extraction, model compound investigations, pyrolysis and thermal
desorption techniques used for isolation and fractionation of soil humic substances
in order to characterize the nature of the non-desorbed pesticide residue (4). Some
examples of such studies are summarized in the following section.

Experimental Examples

Burauel and Führ (10) used outdoor lysimeter studies to observe the formation
and long-term fate of non-extractable residues. They separately applied three
pesticides, two polycyclic aromatic hydrocarbons (PAHs) and two polychlorinated
biphenyls (PCBs) to orthic luvisols that contained either post-emergent winter
wheat, pre-emergent maize or post-emergent summer wheat. They then used an
optimal extraction method for each compound, always starting with a 24-hour
extraction using 0.01M CaCl2 and then using progressively harsher solvent
extractions. A microcosm study carried out by Mordaunt et al. (11) characterised
the formation of bound residues over 91 days for atrazine, dicamba, isoproturon,
lindane, paraquat and trifluralin. The extractability of the adsorbed pesticide was
determined using a sequential extraction procedure, with increasing strength of
solvent (0.01M CaCl2 < acetonitrile:water (9:1) < methanol < dichloromethane)
to simulate readily available and potentially available fractions. The soils were
finally combusted to complete the mass balance.

Gevao et al. (35) assessed the bioavailability of non-extractable (bound)
pesticide residues to earthworms using a Soxhlet extraction. Soils treated
with 14C-labelled atrazine, dicamba and isoproturon were incubated for 100
days and then subjected to exhaustive Soxhlet extractions with methanol and
dichloromethane. Clean soil was then added to the extracted soil in the ratio of 7:1
to increase the volume. After earthworms had lived in these previously extracted
soils for 28 days, 0.02-0.2% of previously bound 14C activity was adsorbed
into earthworm tissue, showing that soil-bound residues can be bioavailable
to earthworms, albeit at very low percentages. This supports speculation that
soil-bound residues are not excluded from environmental interactions and
processes. The authors also found that the presence of earthworms in soils
suppressed the formation of bound residues.
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A study by Dec et al. (27) used a silylation procedure and 13NMR-
spectroscopy to measure bound residue formation for the fungicide cyprodinil.
Soils were incubated with either a low-concentration (3 µg mL-1) or
high-concentration (500 µg mL-1) of cyprodinil for 6 months; the bound residue
fractions amounted to approximately 50% and 18% of the initial radioactivity,
respectively. The isolated humic acid fraction and the NaOH-extracted soil (the
humin fraction) were suspended in chloroform and silylated by overnight shaking
with trimethylchlorosilane. Analysis of the silylated extracts by 13C-NMR
revealed that the formation of bound residue in the 500 µg mL-1 samples involved:
(i) sequestration of the unaltered or slightly altered fungicide in the humin
fraction; and, (ii) cleavage of the cyprodinil molecule between the aromatic rings
with subsequent covalent binding of the separated moieties to humic acid.

Loiseau and Barriuso (28) characterised the formation of bound residues
for atrazine using fractionation techniques for soil organic matter. The authors
incubated soil samples in the laboratory for 56 days. Soil samples were either
sterilized (i.e. soil microflora absent) or unsterilized (i.e. soil microflora present).
The fraction of bound residue formed ranged from 10-40%, with the greater
fractions of bound residue formed in the soil samples where the soil microflora
was present. Soil size fractionation was followed by alkaline extraction, before
and after treatment with hydrogen fluoride; acid hydrolysis with 2M hydrochloric
acid in reflux conditions was then applied to the soils containing bound residues.
Most of the bound residue was found to be in the finest fraction (< 20 µm)
that contained the humified organic matter (from 61-77% of the total bound
residue), and between 78 and 89% was solubilized during the different steps of
the chemical fractionation procedure. Between 20-50% of the bound residue
fraction was identified as intact atrazine and its main derivatives, indicating
that this proportion of the bound residue was probably formed by entrapment in
voids of the soil organic matter. Between 13 and 30% of the bound residue was
associated with humic acids. The ability of microorganisms to mineralize the
triazine ring augments the formation of bound residues via generation of reactive
transformation products. A soil pH < 6 favours the formation and stabilization of
hydroxylated derivatives of atrazine and a high content of humic acids favours
the formation of chemically bound residues.

Many experiments quantifying bound residues, non-extractable residues
and irreversible sorption have used exhaustive extraction procedures of varying
harshness. There is a general consensus that although the results of such
solvent-extraction studies reflect potential behaviors of the compounds and
their metabolites in the environment, the fraction of non-extractable compound
still remains operationally-defined by the chosen extraction procedure (11).
Thus, it will always be possible to obtain better recoveries of compound where
availability of technique, time and cost is of no consideration. The soil used in
the experimental system no longer represents natural soil as the use of organic
solvents in soil extractions dramatically change the soil structure (11). This
occurs due to the removal of both soil water and a large part of the organic matter
(usually the more soluble humic acids) from the soil matrix. Therefore, the
non-extractable fraction determined using such methods may only be of limited
relevance to natural soils. A more sensible approach would be to adopt a more
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“natural” extraction (i.e. one that mimics solutions likely to be present in the soil),
giving a resultant bound residue likely to be representative of field conditions
(35). Thus, the use of isotopes, mainly 14C, have played an important role in
characterizing pesticide exchange kinetics.

Isotope Exchange

A promising experimental method developed by Celis and Koskinen (14, 15)
and later adopted by Sander and Pignatello (19) is the isotope exchange technique,
which characterizes pesticide exchange kinetics in-situ. The isotope exchange
technique involves the use of both 12C- and 14C-labelled pesticide, which are
initially applied to soils separately. Following the adsorption period, 12C- and
14C-pesticide supernatants are then exchanged between corresponding samples
(Figure 1).

Figure 1. The isotope exchange technique.

The subsequent exchange between 12C- and 14C-pesticide is then observed
during a specific length of time in order to characterize the kinetics of pesticide
exchange and provide an estimation of the amount of sorbed pesticide that was
not taking part in the exchange. Celis and Koskinen’s method eliminates inherent
experimental artifacts of other approaches such as the specific effectiveness of
the extracting method and changes to the sorption matrix. However, taking into
account the recent advances in knowledge in both sorption-desorption kinetics
and irreversibility in the sorption-desorption process, it would seem unlikely that
true irreversible sorption could be measured after the three-day period considered
by the authors. Sander and Pignatello (18, 19) also carried out isotope exchange
experiments, which they considered a promising method to unequivocally
establish whether sorbate entrapment occurs during a sorption-desorption
cycle. Sander and Pignatello (18, 19) used equilibration times of up to 140
days with the objective of ensuring sorption equilibrium in their forward
isotope exchange experiment with the persistent hydrocarbons naphthalene and
1,4-dichlorobenzene.
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An isotope exchange experiment was also carried out by Suddaby (36) using
three test compounds and soils to establish whether isotope exchange techniques
are an effective measure of physical irreversibility in pesticide sorption-desorption
to soils over time; and if present, whether the irreversibly bound fraction of
pesticide changes over time, or is influenced by pesticide and soil type. The three
pesticides were selected to have a range in sorption properties; they comprised
chlorotoluron (equilibration time of up to 56 days, 14-day isotope exchange),
prometryn (equilibration time of up to 168 days, 14-day isotope exchange), and
hexaconazole (equilibration time of up to 168 days, 14-day isotope exchange).
The experiments were carried out with three soils (Blackwood, Andover, Salop
series) with different clay contents and pH. The soils were sterilized to control
degradation, thus only the parent compound was taking part in the exchange
between the soil and solution. Sorption equilibrium was not reached during the
equilibration time for all pesticide-soil systems studied, even after 168 days. As
a result, further adsorption was observed rather than isotope exchange during
the 14-day exchange period. Thus the isotope exchange method is not powerful
enough to discriminate between slowly reversible and irreversible sorption due to
the protracted time-scales involved in reaching true equilibrium.

A new forced isotope exchange procedure, involving the addition of a
high-concentration 12C-pesticide solution was developed by Suddaby (36) and
tested for the same pesticide-soil combinations. The forced isotope exchange
technique aims to characterize the fraction of irreversible sorption that is relevant
under field conditions. Forced isotope exchange was carried out over extended
time scales following adsorption up to 168 days and the 14-day isotope exchange
phase. The procedure assumes that the capacity of a soil to adsorb a pesticide
has a saturation point. Repeated influx of high-concentration 12C-pesticide over
time ensures that competition for sorption to soil between 12C- and 14C-pesticide
is increasingly biased towards the former. The supply of 12C-pesticide to the soil
surface to take part in sorption is essentially instantaneous with desorption the
rate-limiting step. Thus, as 12C-pesticide occupies all available sorption sites
by out-competing any available 14C-pesticide, it is possible to identify, through
measurement of 14C-pesticide in solution, the proportion of sorbed 14C-pesticide
available for desorption and hence the proportion of 14C-pesticide not taking part
in the sorption-desorption process.

All compounds showed a similar desorption profile and that of chlorotoluron
is shown as an example. The bulk of total recoverable 14C-chlorotoluron was
extracted with the first addition of 12C-chlorotoluron (average 25% Blackwood,
42% Andover and 21% Salop after 1 d; Figure 2). This was followed by a
gradual decline in 14C-chlorotoluron recovery over time, which finally reached
<1% recovery of initial for the Blackwood and Andover soils and 2% for the
Salop soil between 161 and 204 days. It should also be noted that in each case
the forced exchange was still releasing small amounts of 14C-pesticide from soil
(particularly the Salop soil) at the end of the process, albeit at very slow rates.
Thus, desorption endpoints had still not been reached even after 204 days.

At the end of the desorption procedure, soils were extracted with solvent and
then combusted. The mass balance for chlorotoluron is shown in Figure 3. The
three extractable fractions characterized by Figure 3 show the relative amounts
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of 14C-chlorotoluron desorbed from the soil when the harshness of the extraction
was increased in the order: solvent > forced isotope exchange > isotope exchange.
Further analysis revealed the irreversible fraction, proportion of metabolite(s) and
a fraction unaccounted for by the chemical analyses.

Figure 2. Cumulative percentage recovery of initial 14C-chlorotoluron applied
using the forced isotope exchange method. Samples are initially 14C with 56-days

sorption and isotope exchange for 14-days (3 replicates per soil).

A three-site sorption model was also developed to assess whether the
data generated by isotope exchange and forced isotope exchange experiments
is sufficient to disentangle non-equilibrium and irreversible sorption, and is
discussed in the following section.

Modeling Approaches To Quantify Irreversibility in Pesticide
Sorption-Desorption in Soil

Mathematical modeling provides an important means to anticipate, and
thereby minimize, potentially adverse impacts to non-target environmental
compartments. The development and validation of mathematical models with the
power to accurately assess pesticide fate in the environment is a complicated task.
The sorption of organic chemicals in soils is kinetically controlled by rate-limiting
processes. As a consequence, a number of attempts have been made to model
non-equilibrium and irreversible sorption processes mathematically. These will
be summarized in the following sections, building on existing literature reviews
(37–41).

Irreversible sorption cannot be modeled without instantaneous and/or non-
equilibrium sorption sites. Therefore, the following modeling section discusses
the most commonly used approaches for modeling non-equilibrium sorption and
irreversible sorption.

209

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Figure 3. Mass balance of initially-applied 14C-chlorotoluron to nine soil samples adsorbed for 56-days. Three replicate samples per soil
type are shown. The non-sorbed fraction reflects 14C-chlorotoluron present in the aqueous phase after the adsorption period, whilst that

which partitioned to the soil is collectively represented by the three extractable fractions and irreversibly sorbed fraction.
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Mass Transfer Models

Mass transfer models assume that the sorbent is comprised of one or
multiple sorption sites or domains (42). Solute movement between the different
sites or domains is usually assumed to follow first-order reaction kinetics,
though second-order kinetics have also been used (43). Rate-limited transfer
processes are generated by either: (i) transport-related (physical) non-equilibrium;
or (ii) sorption-related non-equilibrium (44). Transport-related (physical)
non-equilibrium is caused by heterogeneous flow domains (e.g. aggregates
and macropores); their rate-limited effect on solute transport has been well
documented (44–46). Sorption-related non-equilibrium results from either
chemical non-equilibrium (e.g. chemisorption) or rate-limited diffusive mass
transfer processes (44). Since the sorption of several organic compounds is
usually driven by partitioning between the soil solution and soil organic matter,
chemical non-equilibrium effects are usually disregarded (44).

Two major mass transfer modeling approaches have been established: (i)
mobile-immobile (two-region) models; and, (ii) two-site and multi-site models.
Modeling approaches used to incorporate irreversible sorption will also be
considered.

Mobile-Immobile (Two-Region) Models

Mobile-immobile (two-region) models explain non-equilibrium behavior
by assuming that the soil matrix consists of two types of regions: (i) a region
where the soil water is mobile; and, (ii) a region where the soil water is immobile.
Deans (47) was amongst the earliest to conceptualize the soil matrix in terms
of mobile and immobile regions. van Genuchten and Wierenga (48) also
proposed a model where the soil water is divided into mobile and immobile
regions. Convective-dispersive solute transport is limited to the mobile soil
water region and diffusive mass transfer processes control the rate of pesticide
adsorption-desorption within the immobile soil water region (49). Ma and Selim
(37) have also provided equations to describe solute movement in mobile and
immobile regions of the soil water. The difficulty in using mobile-immobile
(two-region) models however, is the uncertainty involved in defining the relative
size of mobile and immobile domains (37).

Two-Site Models and Multi-Site Models

Two-site models (or two-stage models) are the simplest form of a
multi-site model. It should be noted that two-site models are mathematically
indistinguishable from mobile-immobile (two-region) models, described in
the previous section. In a two-site model, the soil matrix is divided into two
types of sorption sites: (i) sites where sorption reactions occur instantaneously
(equilibrium sorption); and, (ii) sites where sorption reactions are rate-limited
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and occur kinetically, proceeding as a first-order reaction (40, 50). The faster
sorption reactions are assumed to occur on easily accessible sites e.g. the outer
surface of soil aggregates, with the slower sorption reactions postulated to
occur on less accessible sorption sites situated within the soil organic matter
(41). Solute transfer between the fast and slow sorption sites is described by
kinetically-controlled reactions (50–52). Degradation may also be integrated into
two-site models, operating at either one or both types of sorption sites (53).

The two-site approach has been used in the leachingmodel PEARL (54) and in
the PEARLNEQ software for predicting parameters to describe long-term sorption
kinetics (55). Solute sorbed at equilibrium sites is assumed to be constantly at
equilibrium and the solute sorbed at non-equilibrium sites is described by a pseudo
first-order sorption rate equation (55). Degradation is only assumed to affect the
solute sorbed at equilibrium sites. A similar approach to non-equilibrium sorption
has also been implemented into the pesticide leachingmodelMACRO (56), though
degradation in this model is described by four separate first-order kinetic rate
coefficients (solid and liquid, micro- and macropores).

The assumption of only two sorption sites oversimplifies soil systems.
Boesten et al. (57) for example, found it was necessary to include three sorption
sites in order to adequately describe their data: (i) sites where sorption reactions
occur instantaneously; (ii) sites where sorption reactions occur kinetically using a
time-scale of days; and, (iii) sites where sorption reactions occur kinetically using
a time-scale of hundreds of days. Saffron et al. (58) considered three types of
desorption regimes: (i) a fast or instantaneous regime, where desorption occurs at
rates not captured by the first few sampling points; (ii) a dynamic regime in which
rates are well measured by the sampling scheme; and, (iii) a slow regime where
rates are slower than can be measured given the combination of data uncertainty
and duration of sampling. They found that although naphthalene desorption was
best described by two regimes, all three regimes were required to adequately
describe the desorption behavior of atrazine. Although in reality there are
multiple sorption sites, each with different rates of sorption, obtaining sufficient
experimental data to adequately parameterize such models is challenging (41).

Irreversible Sorption Models

In an irreversible sorption model, the rate of desorption from one type
of sorption site is set to zero. Selim and Amacher (43) proposed the use of
a second-order kinetic approach to describe solute retention during transport
in soils; their model incorporated three different sorption sites, two reversible
(S1, S2) and one irreversible (Sirr). They used five adsorption-desorption rate
constants in total (though the rate of desorption from the irreversible site (Sirr)
is zero). Prata et al. (59) fitted atrazine breakthrough curves with a three-site
chemical non-equilibrium convective-dispersive transport model considering
irreversible sorption. The three-site non-equilibrium model predicted that around
40% of the applied atrazine was irreversibly sorbed at the end of the leaching
experiment, which corresponded with the sum of their measured extractable and
non-extractable fractions.
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Celis and Koskinen (14, 15) also considered irreversible sorption in their
two-site model. They assumed that sorption occurred on either easily desorbable
sites or irreversible sites. When the authors fitted the model to the data from
the isotope-exchange experiments described above, the model estimated that
approximately 10% of sorbed pesticide was irreversibly bound. Suddaby et al.
(60) re-analysed Celis and Koskinen’s data using a three-site sorption model
(Figure 4). Its purpose was to simulate: (i) instantaneous exchange between
solution and soil in the equilibrium phase; (ii) slow but reversible binding on
non-equilibrium sites and (iii) slow movement from non-equilibrium sites to
irreversible sites.

Figure 4. Schematic representation of the three-site model. The equilibrium
phase (Meq) includes both the concentration (µg mL-1) of pesticide in the soil
solution (Caq) and the pesticide sorbed (µg g-1) at equilibrium sites (Xeq).

Reproduced with permission from Suddaby et al. (60). Copyright 2013 American
Chemical Society.

The equations used to apply the three-site sorption model to Celis and
Koskinen’s isotope exchange data are described in detail in Suddaby et al. (60);
only an outline of the mathematical is described here. The quantity of pesticide
sorbed at equilibrium sites (Xeq) was derived using the following equation:

where Kfeq is the Freundlich sorption distribution coefficient and 1/n is the
Freundlich exponent, describing sorption nonlinearity with increasing solute
concentration. The quantity of pesticide sorbed at equilibrium sites (Xeq) is then
used to determine the mass of pesticide in the equilibrium phase (Meq):

where the parameters Vsol and Msoil, respectively refer to the volume of
solution and mass of soil used in the experimental system. The following
differential equations were used to calculate the masses of pesticide in the
nonequilibrium (Mneq) and irreversible phases (Mirr) of sorption:
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where kdes is the desorption or exchange rate, Fneq is the ratio of sorption
in the nonequilibrium phase to sorption in the equilibrium phase and kirr is the
rate of irreversible sorption. The experimental method necessitates that the
three-site model is applied four times per pesticide in order to predict the behavior
of both 12C and 14C isotopes individually during the sorption phase and then
simultaneously after supernatant exchange. Application of the three-site model
to Celis and Koskinen’s data showed that experimental observations could be
described by instantaneous and non-equilibrium sorption behavior alone and
without the need to invoke an additional irreversible sorption component (60).

However, the irreversible sorption model was also applied to the adsorption,
isotope exchange and forced isotope exchange datasets described earlier, obtained
for chlorotoluron, prometryn and hexaconazole by Suddaby (36). For these
datasets, the irreversible sorption sites had to be included to describe the data
(Figure 5). Furthermore, the fraction of irreversible sorption at the end of the
experiments estimated by the model was larger than the measured fraction. This
highlights the difficulty in including irreversible sorption in pesticide sorption
models, as it is difficult to obtain detailed experimental data accurate enough to
support the necessary additional model parameters.

Diffusion Models

These models are based on the assumption that sorption can be described in
terms of diffusion through the spherical geometry of the sorbent, usually based
on Fick’s law (40, 42). Ma and Selim (42) have established complex diffusion
equations based on several aggregate geometries (rectangular, solid and hollow
cylindrical aggregates) by introducing a time-dependent phase transfer constant
in addition to the diffusion coefficient. van Beinum et al. (61) and Altfelder and
Streck (2) have both used diffusion models to simulate time-dependent sorption.
van Beinum et al. (61) were able to effectively describe the radial diffusion of
pesticide into lignin particles and its subsequent desorption. Altfelder and Streck
(2) compared a first-order and spherical diffusion model to describe and predict
the long-term sorption and desorption processes of chlorotoluron in two soils;
they found that the spherical diffusion model performed better than the first-order
model. Diffusion models based on well-defined geometry are difficult to apply to a
field situation, since they require information relating to the geometry of structural
units, which are rarely available (42).
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Figure 5. Example of irreversible model fit to the hexaconazole adsorption,
isotope exchange and forced isotope exchange data for the Blackwood soil, after
56, 112 and 168 days of adsorption, 14 days isotope exchange and 147 days for

forced isotope exchange. Data are plotted in triplicate.
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Chapter Summary

Adsorption-desorption is not a simple instantaneous equilibrium process
as previously thought, or assumed by many contaminant transport models. As
well as time-dependent sorption interactions, some sorbed pesticide has been
observed to exist in an irretrievable, soil-bound state. This fraction has important
implications for pesticide leaching and bioavailability. Although this fraction of
sorbed pesticide is termed irreversible sorption in principle, many variations of
this term exist within the literature. This is the result of the operational definition
of such residues, which means that their quantification is dependent on the
method of extraction. Therefore, the terms bound residue and non-extractable
residue are commonly used in order to express uncertainty in the true fraction
of irreversibly sorbed pesticide. The mechanisms responsible for irreversible
sorption are proposed to include covalent bonding and physical entrapment and a
proportion may also be biogenic in nature.

Irreversible sorption is not considered in any of the existing regulatory
models to determine predicted environmental pesticide concentrations in soil and
water due to difficulties in deriving the parameters. Slowly reversible sorption
and irreversible sorption are difficult to separate experimentally (41). Very slow
desorption kinetics can give the impression that the sorbed pesticide is irreversibly
bound, though it is instead an effect of an experimental time-frame that is not
long enough to observe desorption end-points (41). Time-dependent sorption
can be used at higher tiers of the regulatory risk assessment but no harmonized
methodology exists.

Although many experimental methods and techniques to quantify and/or
characterize non-desorption pesticide residue exist, a standardized procedure to
adequately distinguish between slowly reversible and irreversible sorption has
not yet been accepted within the scientific community. The isotope exchange
technique, developed by Celis and Koskinen (14, 15) was repeated by Suddaby
et al. (36, 60) who found that the method is not powerful enough to differentiate
between slowly reversible and irreversible sorption as a result of the long time
scales required to reach true sorption equilibrium. Suddaby et al. (36, 60)
developed a new forced isotope exchange technique and tested the method for
three pesticides and soils. Forced isotope exchange is a promising technique for
estimating the proportion of sorbed pesticide taking part in irreversible sorption.
However, for the tested compounds and soils the forced isotope exchange method
showed that under abiotic conditions sorption is largely reversible, but desorption
occurred over exceptionally long time-scales. Irreversible sorption is likely to
occur to a greater extent in the presence of an active soil microbial community.
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Sorption is one of the major processes that determine the fate,
effects, efficacy and ecological risks of pesticides in terrestrial
and aquatic environments. In this chapter we provide an
overview of sorption and its dependence on soil properties.
Soil solid phase consists of mineral and organic matter; both in
strong association with each other make a contribution towards
sorption of pesticides, depending on their relative abundance
in soil/sediments, chemistry and the chemical nature of the
pesticide molecule. We discuss the roles of organic matter
and clay contents as well their chemistries in determining
sorption of pesticides, and assess the partition theory in terms
of its adequacy in describing the observed sorption behavior of
pesticides in soil. The complex interactions and heterogeneities
associated with the soil solid phase contribute to the large
degree of variation in Koc, a parameter that is often used
to extrapolate the pesticide sorption estimate, among soils.
A more comprehensive approach incorporating soil organic
matter as well as soil minerals (both contents as well as
their chemistries) is therefore desirable to fully incorporate
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the role of soil surfaces in sorption of organic compounds.
Therefore, we introduce some emerging approaches based on
chemometrics and infrared spectroscopy that appear promising
for comprehensive representations of the combined role
of organic matter, mineralogy and other soil properties in
estimating pesticide sorption in soil.

Introduction

Sorption is one of the major processes that determine the fate, effects,
and ecological risks of pesticides in terrestrial and aquatic environments. The
sorption process commences as soon as a pesticide molecule comes in contact
with soil/sediment and occurs mainly in the scale of hours. Other processes
such as movement, persistence, efficacy, bioavailability, and ecotoxicity in
the environment are often relatively slower and are affected by the sorption
process. Therefore, the sorption parameter of a pesticide in soil is of fundamental
importance in considering not only its effectiveness (and choosing appropriate
application rate for a given soil type) but its potential risk to the environment.

In this chapter, we provide an overview of sorption and its dependence on
soil properties. We discuss the role of organic matter and clays, their contents
and chemistries in determining sorption behavior of pesticides. We scrutinize
the validity of the partition theory in describing sorption behavior of pesticides
purely on the basis of soil organic carbon content (SOC) alone. We also introduce
emerging approaches, especially those based on chemometrics and infrared
spectroscopy, that appear promising for comprehensive representations of the
combined role of soil organic matter (SOM) and mineralogical properties of soils.

Pesticide Sorption Processes in Soil and Sediments

Uptake of organic molecules by a solid phase from a gaseous or liquid
phase is generally referred to as adsorption. However, some organic compounds
including non-ionic pesticides are also believed to exhibit a phase-partitioning
process (absorption), akin to liquid-type interactions of two immiscible solvents.
This is based on the assumption that the macromolecular SOM acts as an
immiscible solvent leading to a partitioning process, similar to that between
n-octanol and water. The octanol-water partitioning coefficient (Kow) is commonly
used to represent the hydrophobicity of a compound. Since the two processes
(adsorption/absorption) are difficult to distinguish experimentally in soils and
sediments, the term ‘sorption’ is preferred, which makes no distinction between
absorption, adsorption and precipitation of organic compounds (1).

In addition to neutral compounds, many pesticides are ionic or inonizable in
nature. Due to the presence of multiple functional groups, pesticide molecules can
donate or accept protons depending on environmental conditions. The cationic,
anionic or zwitterionic species are formed depending on the chemistry of the
molecule and/or the pH of the surrounding environment. Sorption of pesticides
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on a solid phase can involve a variety of mechanisms, ranging from London-van
der Waals forces, hydrogen bonding, ligand exchange, ion exchange, cation-water
bridging, covalent bonding and even physical trapping (1). Sorption from the
perspective of sorbate as well as sorbent has been discussed by Pignatello (2),
especially on organic carbon and black carbon in soils.

The extent of sorption by a solid phase is determined by the nature and
properties of both sorbate (e.g. a pesticide) and sorbent (soil or sediment) as well
as ambient conditions during the equilibrium process (e.g. temperature, water
content). Chemical characteristics of the aqueous phase which are important for
sorption processes include pH, ionic strength, and redox status, all of which affect
surface properties of sorbent, interactions between liquid and solid phases, and
the ionization state and reactivity of the sorbate. Indeed, liquid-solid interface
characteristics can have important impact on sorbate-sorbent interactions.

Important Soil Properties Affecting Sorption

A number of soil properties including its chemistry, mineralogy, SOM, and
pH, and environmental factors such as soil water content and temperature can
influence pesticide sorption in soil. These soil properties are very important in
determining the mechanisms of sorption and thereafter mobility of a pesticide in
soil. Due to close association between the mineral and organic matter, it is often
difficult to treat these as separate properties, in the context of sorption. Soils are
inherently heterogeneous in nature and how variation of soil parameters influences
the sorption interactions of pesticides is discussed below.

Organic Matter

Soil organic matter has been recognized as one of the most relevant soil
properties in regulating sorption of non-ionizable pesticides (3, 4). Strong
correlation has been frequently observed between sorption of non-ionizable
pesticides and the SOM content (5). However, ionizable pesticides such as
weakly basic triazines can be sorbed to both SOM and clay minerals, and the
sorption is pH dependent (4). For non-ionic pesticides, the humified materials in
soil, due to their oxygen-containing functional groups such as –COOH, phenolic,
aliphatic, enolic, –OH, and C=O, have often been found to be good sorbents (6).

The content and the chemistry of SOM vary from soil to soil in terms of
its polarity, elemental composition, aromaticity, condensation, and degree of
diagenetic evolution from a loose polymer to condensed coal-like structures
(7–10). Both the type and the age of SOM may affect sorption of pesticides.
The type of vegetation from which the SOM originates affects its chemical
composition and degree of decomposition (11). For example, humic materials
of grassland soils are rich in humic acids, whereas fulvic acids dominate in
forest soils (12). The O-alkyl C tends to decrease with decomposition, while the
proportion of alkyl C tends to increase and aromatic C may increase or decrease,
depending on the conditions (13–15).
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Soils around the world have been found to contain different amounts of black
carbon such as charcoal (16), a highly aromatic condensed ring structure. In
addition, biochar (charcoal produced specifically for agricultural use) is attracting
increasing attention as a soil amendment to sequester carbon and enhance soil
fertility (17). Black carbon or biochars have been noted to have very high affinity
for organic compounds including pesticides (18–20). Yang and Sheng (18)
reported that biochar produced from wheat and rice residues was 400-2500 times
more effective than soil in sorbing diuron herbicide. The high specific surface
area and aromatic nature of carbon in biochars may be responsible for their
extraordinary sorption properties (2, 21). However, the capacity of biochars to
sorb pesticides may depend on soil types. For example, Ahmad and colleagues
(unpublished data), recently studied the sorption behavior of carbaryl in two
contrasting soils from New Zealand previously amended with biochars produced
from corn stover at 350 °C and 550 °C. They found that while the amendment of
soils with biochar at an agronomic application rate of 7.2 t C ha-1 enhanced the
sorption of carbaryl significantly; the magnitude of this effect varied considerably
depending on soil type and the pyrolysis temperature used to produce the biochar.

Soil Mineralogy

Clay minerals can sorb organic compounds that are cationic in nature (e.g.
diquat and paraquat herbicides) or those containing polar functional groups
(23–25). The clays in highly weathered soils are dominated by kaolinite (1:1 type
of clay minerals) and have lower capacity for pesticide sorption than 2:1 type clay
minerals such as montmorillonite and vermiculite (26). The high surface acidity
of hydroxyinterlayerd clays and their complexes can increase the protonation of
weakly-basic herbicides such as atrazine and, consequently their sorption by ionic
bonds at low pH, and their sorption by physical forces (H-bonds) at near-neutral
pH (22). Many soils, especially in the tropical regions, contain variable-charge
minerals (e.g. iron oxides, gibbsite) with distinct physical and chemical properties
(27). For example, Oxisols can carry net positive charge at ambient pH and can
effectively sorb anionic pesticides (28).

Other Soil Properties

Unlike hydrophobic non-ionic compounds, sorption of ionizable pesticides
is highly sensitive to variations in the soil pH. This relationship mainly originates
from different proportion of ionic and neutral form of the pesticide present at
each pH level and also from the presence of surfaces with pH-dependent charges
in soils. Soil pH regulates the electrostatic charge of soil colloids (organic matter
and oxides) and protonation or chemical dissociation of pesticide molecules.
Basic pesticide molecules become protonated at lower pH and therefore, more
strongly sorbed to the soil colloids. On the contrary, the acidic pesticides ionize
and become anions as pH increases (one or more pH units above the pKa) and
exhibit lower sorption (28, 29). Soil pH varies markedly among soils of different
regions. The soils in wet tropics are generally acidic, whereas those in arid regions
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are highly alkaline leading to markedly different sorption behavior. This effect
makes direct extrapolation of pesticide sorption data, particularly for ionizable
compounds, between acidic and alkaline soils difficult.

Soil temperature and water content are other important environmental
parameters that may influence pesticide sorption. The effect of soil temperature
on pesticide sorption has been noted to be highly variable. Valverde-Garcia et al.
(30) and Khan et al. (31) noted that the elevation of temperature favoured sorption
of pesticides in soils. They attributed this enhanced sorption to the increased
number of active sites on humus. For 2,4-D sorption by 41 wetland sediments,
Gaultier et al. (32) observed a significant increase in the 2,4-D sorption parameter
when the experimental temperature was at 25°C rather than 5°C. By contrast,
studies on sorption of cyanazine on different homoionic peats by Dios-Cancela
et al. (33) showed decreasing sorption with increasing temperature, which was
attributed to either a decrease in the attractive forces between the pesticide and the
peat or a change in the solubility of the pesticide. In another study on sorption of
atrazine on kaolinite and montmorillonite clays, Fruhstorfer et al. (34) postulated
that since a rise in temperature causes an increase in the kinetic energy of the
molecules with constant electrostatic attraction, this leads to a decrease in sorption
of pesticides.

Sorption may also be influenced by soil moisture status, but this effect is not
well understood. Several studies by Koskinen and co-workers (e.g. (35, 36)) show
that sorption of herbicides may increase with soil water content. Roy et al. (37)
reported significant effects of water content on the sorption of five fungicides and
these effects were found to be dependent on the properties of the chemicals and the
sorption mechanism. Berglöf et al. (35) proposed that at higher water contents,
more pesticide solution is in contact with a large surface area of soil particles,
which facilitates the accessibility of the pesticide to sorption sites. Methods, such
as the one proposed by Ahmad et al. (38), may help better understand the role of
soil water content in sorption of pesticides.

Conventional Approaches of Estimating Sorption of Pesticides
in Soils

Pedotransfer Functions

Pedotransfer functions based on soil properties have been developed to
describe the sorption of pesticides in soils. For example, Weber et al. (39)
correlated the literature reported pesticide Kd values for 57 pesticides from
different chemical classes with the key soil properties (such as SOM, clay content
and /or soil pH) and developed equations for estimation of Kd values for improved
soil mobility predictions. Ahmad and Rahman (40) carried out a study examining
the effect of soil properties mentioned above on sorption of two commonly used
herbicides, atrazine (weak base) and imazethapyr (weak acid), in 101 allophonic
and non-allophanic soils of New Zealand. A wide variation in the sorption
affinities of the soils was found, as the Kd values of atrazine and imazethapyr
ranged from 0.7 to 52.1 L kg-1 and 0.1 to 11.3 L kg-1, respectively. For atrazine,
the sorption affinities for the allophanic set of soils (mean Kd, 8.5 L kg-1) were
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greater than for the non-allophanic set of soils (mean Kd, 7.5 L kg-1). However,
no effect of allophanic status was found on imazethapyr sorption. None of the
measured soil properties could alone explain adequately the sorption behavior of
the herbicides. Multiple regression analyses revealed that SOC content, pH and,
to a lesser extent sand were the primary soil properties. The authors compared
their calculations with Weber et al. (39) models and found limited congruence
between the two (as shown in Figure 1). The above examples show that while
pesticide sorption in soils can be correlated well to soil properties, it may not be
easy to transfer the functions based on soils from one region to another.

Figure 1. Relationships between measured Kd values of atrazine and imazethapyr
and corresponding Kd values calculated from Pesticides Properties Database
(42) and Weber’s models (39). Reprinted with permission from Ahmad and

Rahman, (40). Copyright (2009) American Chemical Society.

Quantitative Structure-Activity Relationship (QSAR)

There are several indirect methods of estimating sorption based on chemical
characteristics of compounds, ranging from solubility, Kow, retention factor
in reverse-phase liquid chromatography and molecular structure. So called
Quantitative Structure-Activity Relationship (QSAR) based approaches rely
on molecular properties, such as molecular size descriptors, solvation energy
relationships, molecular connectivity indices and other properties. These methods
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have been discussed by Wauchope et al. (42) and by others cited in their review.
Another chapter in this book (43) describes the QSAR approach in detail and
applies QSAR for pesticide sorption. The appropriateness of the choice of a
particular QSAR approach depends on the chemical structure and properties of
the molecule (44) and their utility on the objective of the exercise (42).

Partitioning Theory (Koc Model)

Partitioning processes on SOM from aqueous systems have been widely
accepted as a major contributing factor, especially for non-ionic pesticides (45).
Consequently, organic carbon content of soil is often used to normalise the
sorption coefficient (Kd) of pesticides to obtain Koc, such that Koc = Kd /fOC. where
fOC is the fraction of organic carbon in soil. Assuming that Koc is a constant (i.e.
sorption per unit carbon in various soils is the same), one can extrapolate Koc
value from one soil to other. This approach has been widely accepted and used
in various pesticide fate models. However, partitioning is a historic paradigm for
sorption on SOM for non-polar solutes and, in most cases, it is a simplification
for the purposes of modelling rather than driven by the evidence from sorption
studies (2).

A large body of evidence in literature shows that Koc, despite the users’
tendency to assume this as a constant, is a highly variable parameter. As early as
in 1972, Hamakar and Thompson (46) and subsequently, Minglegrin and Gerstl
(47) and Gerstl (48) highlighted the variability associated with Koc (KOM based on
bulk SOM was used in some of these studies). More recently, Ahmad et al. (49)
measured sorption of two pesticides (carbaryl and phosalone) on 48 soils collected
from tropical and temperate regions involving three countries (Australia, Pakistan
and the U.K.). They found only about half the variance (46-53 %) in Kd was
explainable from the foc alone. Similarly, using 101 soils from southern Australia,
Forouzangohar et al. (50) noted that while sorption of diuron showed dependence
on SOM, only 42% of the variation in Kd was explained by foc. The sorption
data reported by Ahmad et al. (49) for carbaryl measured in soils from various
countries have been presented in Figure 2. The figure demonstrates that contrary
to assumption of Koc being constant, the parameter shows strong dependency on
the chemistry of SOC rather than its concentration in soil.

Wauchope et al. (42), in a most comprehensive analysis, assessed thousands
ofKoc values of a large number of pesticides from a database (41) and identified the
extent of variations in the parameter and factors contributing to this. They noted
that typical coefficients of variation (CV) among reported values of Koc were in
the range of 40-60%. The ratios between maximum and minimum values reported
for the same compound from a single database were found to vary from 3 to 10
(Figure 3). The variation was found to be independent of the magnitude ofKoc (i.e.
low or high Koc reflecting hydrophilic or hydrophobic compounds). The authors
ascribed about half of the observed variability in Koc to experimental errors plus
the variability in measuring SOM and the remainder to the variability in organic
matter itself, such as its chemistry. However, we believe that soil minerals (organo-
mineral interactions) may also have contributed to the observed variability in Koc
and should be taken into considerations.
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Figure 2. Dependence of sorption (Koc) of carbaryl insecticide in soils on the
chemistry of soil organic carbon. Reprinted with permission from Ahmad et al.

(49). Copyright (2001) American Chemical Society.

Disproportionate Reliance on Soil Organic Matter Content in
Prediction of Sorption

As discussed above, it is generally assumed that the sorption behavior of
organic compounds is largely moderated by the content of organic matter in soils/
sediments, and the role of clay minerals is generally ignored, especially during
risk assessment (51). This is despite the fact that often soils are much richer
in the mineral matter, i.e. its content in soils is often an order of magnitude
higher than that of organic matter. Besides, numerous studies over the years
have demonstrated that clay minerals, especially expandable smectites, do have
a strong affinity for a variety of organic compounds such as pesticides and
nitroaromatic compounds. For example, Laird et al. (52) studied sorption of
atrazine on soil smectite clays and showed that relatively pure smectites were quite
effective sorbents of the herbicide, depending on their compositions. Similarly,
clay minerals were found to be good sorbents for nitroaromatic compounds (e.g.
(53)). Despite the large body of literature, the role of clays in determining the
sorption behavior of organic compounds in soils/sediments, and consequently
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their ecological risks, is still not fully appreciated and incorporated in the risk
assessment models. Soil organic matter and clay minerals are often closely
associated and the type of precursors of humic substances and chelating organic
acids associated with hydroxyinterlayered clays also have a pronounced impact
on the sorption of pesticides by clays (22). Hence, the impact of clay minerals on
pesticide sorption needs to be studied by considering this association.

Figure 3. The observed values (A) and the variations in Koc values (B) as
indicated by the ratio of maximum to minimum values for a range of pesticide
active ingredients in soils. Reproduced with permission from Wauchope et al.

(42). Copyright (2002) Society of Chemical Industry).
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One of the major developments that led to a disproportionate dominance
of the role of organic matter in sorption of organic compounds in soils is the
introduction of the “partition theory” (45), mentioned earlier in this paper. This
theory allowed an easy extrapolation of sorption measured on one soil to another
based on its carbon content alone, using the Koc parameter. The simplicity of the
concept led to models which could account for sorption of organic compounds
in soil/sediments by a universal parameter Koc, applicable to all soils/sediments.
However, as discussed earlier, this concept is a simplification based on the
sorption behavior of non-ionic organic compounds, while a substantial proportion
of pesticides are ionic or ionizable (weakly basic, acidic) in nature. For example,
the most used herbicide glyphosate is a zwitterion, the bypridilium herbicides
(paraquat and diquat) are cationic in nature and the triazines (e.g. atrazine)
are weakly basic compounds. Indeed the low ecological risk profiles of most
commonly used herbicides glyphosate, paraquat and diquat are due to their strong
adsorption on clay minerals. But for the ability of soil clays to “detoxify” them
rapidly, the environmental safety of these herbicides may not have been the same.

Furthermore, the measured sorption isotherms of organic compounds in soils/
sediments are more commonly non-linear in nature, contrary to the assumption
of the partition theory (2). The non-linearity of sorption isotherms is indicative
of complex organo-mineral interactions reflecting the role of chemistry of organic
matter and/or clays in determining the sorption behavior of organic compounds in
soils.

As discussed above, our studies (49, 54, 55) and those by many others
(42, 56–58) observed that the organic matter content alone fails to adequately
describe the sorption behavior of a wide range of pesticides in soils. Due to
strong association between the two, the minerals and organic matter in soils
are essentially inseparable (59) and organo-mineral interactions in soil may
play a major role in sorption of organic compounds including pesticides (57).
A more comprehensive approach incorporating soil organic as well as mineral
matter (both contents as well as their chemistries) is therefore desirable to fully
incorporate the role of soil surfaces in sorption of organic compounds.

Recent Advances in Estimating Pesticide Sorption Based on
Integrated Soil Properties

The recent developments in application of infrared spectroscopy (IR) in
characterization of soils and sediments open a window of opportunity to estimate
the sorption of organic compounds based on the overall contributions of mineral
as well as organic matter in soils. Chemometric approaches, especially partial
least squares (PLS) regression, with infrared spectroscopy have been found to be
particularly effective in characterizing soils in terms of a range of soil properties,
such as organic carbon content, clay content, cation exchange capacity etc.
(60). Application of a couple of these approaches in estimating the sorption of
pesticides has been discussed below.

230

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Prediction of Soil Properties by Infrared Spectroscopy

Several statistical measures can be used to evaluate how well IR predicts soil
properties. The coefficient of determination (R2) and the root mean square error
of prediction (RMSEP) or the standard error of prediction (SEP) are the most
consistent parameters reported in studies. Using the SEP and bias separately is
preferred to using RMSEP which integrates the bias in its value (61). The ratio of
prediction to deviation (RPD) and the ratio of the SEP to the range (RER) are also
commonly used to evaluate the accuracy of IR measurements (62). In general, it
is understood that a larger R2, smaller SEP or RMSEP, and larger RPD indicate
a more successful application of IR when measuring soil properties (63). While
Dunn et al. (64) suggested 3 categories for RPD as poor, <1.6; acceptable, 1.6-2.0;
and excellent, >2.0 for soil analysis. Malley et al. (2004) proposed that values
of RPD >4 be judged as indicating excellent calibrations, >3 as successful, and
between 2.25 to 3.0 as moderately successful.

Near-infrared spectroscopy (NIR) is a technique that has long been recognized
as having practical applications in agricultural and food industries. Its potential
in soil research has also been demonstrated. For example, it has been used to
successfully predict total carbon, or fractions of carbon in soils obtained from
regions in Canada (62, 65, 67), United States (63, 67, 68), Australia (64), Uruguay
(69), and Germany, Norway, and Denmark (70). NIR has also been used to predict
soil textural characteristics (sand, silt or clay), pH, cation exchange capacity
(CEC), CaCO3 content, and the total or exchangeable macronutrients (i.e., N, K,
Ca, Mg, and P), micronutrients (Fe, Mn, Zn, Cu, Mo, and Ni), and metals (Pd, Co,
Cd, Ag, V, Hg, Cr) (65, 66, 69, 71). The accuracy of these predictions ranged from
less than successful to excellent calibrations. For the same parameter, one data
set of soil samples may show successful calibrations (e.g. CEC shows R2 = 0.89
and RPD = 3.0 for Duck Mountain Provincial Park samples [n=108] in Malley
et al. (71), while another data set of soil samples demonstrates poor calibrations
(e.g. CEC shows R2 = 0.51 and RPD = 1.4 for agro-Manitoba samples [n=1,000]
in Malley et al. (71). When small (e.g. n=100) or large (e.g. n=1,000) data sets
are used, moderately to excellent NIR calibrations are common when measuring
SOC and clay (63, 71, 72).

Similarly, mid-infrared spectroscopy (MIR) combined with PLS regression
approach has also been successfully used to estimate the content of soil major
oxides, pH, sum of cations, Ca, Mg, K, Na, total N, clay content, and organic
carbon content (60, 73). The technique has been particularly successful in
predicting the SOC. Furthermore, both NIR and MIR techniques have also been
applied to predict the chemistry of organic carbon. For example, Cozzolino and
Moron (69) and Zimmermann et al. (74) showed that both MIR and NIR not
only can estimate SOC in bulk soils but also in different particle-size fractions.
Janik et al. (75) and Bornemann et al. (76) demonstrated that MIR could also be
used for effective estimations of black carbon in soils. They employed MIR-PLS
approach in analyzing the foc and black carbon contents in 309 soils collected from
different depths in soils from America, Europe and Asia. In this study benzene
polycarboxylic acid (BPCAs) was used as a specific marker of black carbon. The
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prediction of BPCA carbon in the full set of soils (n=309) resulted in a R2 of 0.84
and an RPD close to 2.5, both indicating a secure predictive capability of the
approach.

Prediction of Pesticide Sorption in Soils by Near- and Mid-Infrared
Spectroscopy and Chemometrics

Bengtsson et al. (77) were the first to demonstrate that NIR could be used
to determine sorption coefficients (Kd) in soils. Their reference data consisted
of Kd values of lindane (an organochlorine insecticide) and linuron (a substituted
urea herbicide) determined for 27 soil samples by batch equilibrium experiments.
Spectral data was collected between 1100 to 2500 nm at 2 nm intervals using a NIR
4600 scanning monochromator. The reference and NIR data demonstrated good
agreement with R2 being 0.85 for lindane and 0.84 for linuron. Both pesticides
showed good correlations that were even greater than the reported linear relation
between SOC and lindane (R2=0.82) or linuron (R2=0.74) Kd values. Both lindane
and linuron are neutral pesticides whose sorption in soil linearly increases with
increasing SOC (77).

Farenhorst and collaborators further investigated the feasibility of NIR as a
tool for estimating Kd values for pesticides and related compounds (Singh et al.
(66, 78)). Their study included the herbicides 2,4-D (a weakly-acidic), atrazine
(a weakly-basic), and glyphosate (a zwitterion), as well as a natural steroid
hormone, 17 β-estradiol. They determined the Kd values of these compounds
in 609 horizons collected from 70 soil profiles in two irregular undulating to
hummocky agricultural landscapes in the Canadian Prairies. Spectral data were
obtained by scanning the 609 soil samples in 5 cm diameter glass Petri dishes to
a 45VISNIR Zeiss Corona spectrometer using a wavelength range 380−1690 at 2
nm intervals, and to a Foss NIR Systems 6500 spectrometer with a wavelength
range 1100−2500 at 2 nm intervals. The noisy region (380−700 nm) of the
Corona spectra was removed so that, for the Corona, there was a wavelength
range of 700−1690 nm. For both the Corona and Foss spectrometers, excellent to
moderately successful calibrations were found for SOC and Kd values of 2,4-D,
atrazine and 17 β-estradiol, with R2 ranging from 0.80 to 0.96, and the RPD
ranging from 2.22 to 5.34 (Table 1). In contrast, the calibrations for glyphosate,
pH and soil textural characteristics were largely unsuccessful in both landscapes
and with both spectrometers (Table 1). These and the results of Bengtsson et al.
(77) suggest that for herbicides such as atrazine, 2,4-D and linuron, whose soil
retention is largely controlled by SOC, NIR is a good tool for quantifying sorption
coefficients in soil, but it has limited value for measuring sorption coefficients
for glyphosate, which is not significantly correlated with SOC (79) or may even
decrease with increasing SOC (80).
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Table 1. Calibration Results of 2,4-D, Atrazine, Glyphosate and 17β-Estradiol Kd Values and Selected Soil Properties in Soil
Samples Presented in Petri Dishes to Two NIR Spectrometers (Data from Ref. (66), Farenhorst, Unpublished Data)

R2 SEP Bias RPD RER R2 SEP Bias RPD RER

Parameter Landscape A (n=313) Landscape B (n=295)

Foss NIR Systems 6500 spectrometer

2,4-D 0.92 0.39 -3.07E-07 3.96 17.24 0.86 0.34 -9.79E-06 2.53 11.40

Atrazine 0.93 1.93 -2.38E-05 4.18 16.58 0.91 0.60 -7.08E-07 3.35 14.01

Glyphosate 0.54 16.91 -2.35E-04 1.40 6.97 0.58 60.44 -2.04E-05 1.76 9.01

17β-estradiol 0.92 2.71 8.75E-07 3.78 14.77 0.84 2.42 -4.42E-07 2.53 10.89

SOC% 0.96 0.26 3.89E-07 5.34 18.89 0.91 0.29 -1.86E-06 3.21 12.16

pH 0.67 0.19 2.76E-06 1.70 8.22 0.65 0.39 -2.32E-05 1.71 6.55

Sand% 0.51 10.9 5.48E-06 1.25 6.39 0.70 5.89 -8.01E-06 1.76 10.00

Silt% 0.43 5.51 -6.90E-05 1.35 7.17 0.51 5.92 1.36E-04 1.44 9.03

Clay% 0.48 6.83 4.12E-06 1.05 4.83 0.79 3.28 -6.04E-05 2.13 8.87

45VISNIR Zeiss Corona spectrometer

2,4-D 0.88 0.51 4.84E-06 3.02 14.91 0.82 0.38 -4.51E-09 2.22 10.03

Atrazine 0.85 3.12 1.23E-07 2.42 9.28 0.80 0.87 1.04E-07 2.31 9.68

Glyphosate 0.41 19.19 -1.08E-06 1.34 8.41 0.57 56.22 -7.90E-05 1.90 9.68

17β-estradiol 0.93 2.69 8.06E-05 3.75 15.27 0.81 2.58 -6.99E-07 2.37 10.21

Continued on next page.
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Table 1. (Continued). Calibration Results of 2,4-D, Atrazine, Glyphosate and 17β-Estradiol Kd Values and Selected Soil Properties
in Soil Samples Presented in Petri Dishes to Two NIR Spectrometers (Data from Ref. (66), Farenhorst, Unpublished Data)

R2 SEP Bias RPD RER R2 SEP Bias RPD RER

Parameter Landscape A (n=313) Landscape B (n=295)

SOC% 0.92 0.37 2.14E-08 3.49 13.04 0.90 0.31 -5.60E-08 2.98 11.26

pH 0.76 0.16 -1.80E-07 2.08 9.18 0.76 0.33 -2.88E-07 2.05 7.83

Sand% 0.55 9.37 7.41E-05 1.83 9.99 0.52 7.31 2.22E-05 1.39 8.06

Silt% 0.49 5.2 -4.03E-05 1.64 10.6 0.41 6.59 3.24E-05 1.29 8.12

Clay% 0.59 5.25 -1.20E-05 1.93 9.09 0.73 3.69 -7.35E-06 1.91 7.89
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MIR spectroscopy has been successfully employed to predict sorption of
pesticides. Forouzangohar et al. (50) tested this approach on a set of 101 surface
soils, collected along a 400 km longitudinal transact from south-eastern South
Australia. The soils were characterized using diffuse reflectance infrared Fourier
transform (DRIFT) technique. Sorption coefficients of a non-ionic pesticide,
diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], were measured on these soils
by a batch method. The Koc approach was compared against the MIR-PLS
approach for prediction of Kd values. They developed and validated the MIR-PLS
model by dividing the initial data set into four validation sets. Calibrations were
developed using leave-one-out cross-validation which estimates prediction error
by removing samples from the calibration set one by one, and predicting them
as unknown samples using the remaining calibration samples (81). The model
resulted in a coefficient of determination (R2) of 0.69, standard error (SE) of 5.57
and RPD of 1.63. The Koc approach, on the other hand, was found to be inferior
with values of R2, SE and RPD of 0.42, 7.26 and 1.25, respectively (Figure 4). To
detect spectral outliers, principal component analysis (PCA) was performed on
the spectra. It was noted that the significant statistical difference between the two
models was mainly due to the outliers detected via PCA. While, the performance
of the two models was essentially similar for the rest of the calibration set, this was
only true when the best fit Koc was obtained from the measured sorption data on
these 101 soils and not taken from the literature. For another herbicide, atrazine,
Kookana et al. (82) tested the same approach on a smaller set of surface and
subsurface soils (total of 31 samples) and found that compared to the Koc model
based on fOC alone, the predictions using MIR-PLS were significantly superior
with improved correlation coefficients and lower standard error of estimation.

Figure 4. Measured versus predicted sorption parameter (Kd) using Koc approach
(a) and using mid infrared spectroscopy incorporating various soil types (b).
Reprinted with permission from Forouzangohar et al., (50). Copyright(2008)

American Chemical Society.
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Forouzangohar et al. (83) also made a direct comparison between MIR and
visible-NIR (VNIR) for prediction of sorption of diuron on 112 Australian soils
(including the 101 soils used in the earlier study). For VNIRS, the spectral data
were collected from 400 to 2500 nm with an interval of 2 nm on a NIR 6500
(NIRSystems, Silver Spring, USA) and for MIR spectroscopy, the spectral date
were collected for 60 s in the frequency range of 4000 to 500 cm-1 (2500-20000
nm) at 8 cm-1 resolution on Perkin Elmer Spectrum-One FTIR (Perkin Elmer Inc.,
Mass. USA). A comparison of the performances of VNIR and MIR spectroscopy
for predicting both fOC and Kd of diuron was made using PLS regression. In this
study, MIR outperformed VNIR for predictions of both of the parameters. MIR-
PLSmodel provided a better prediction for diuronKd values in their calibration set.
The key indices R2 and RPD for Kd prediction were 0.8 and 2.3 for the MIR-PLS
model and 0.4 and 1.3 for the VNIR-PLS model, respectively.

Concluding Remarks

Soil solid phase consists of mineral and organic matters, which are strongly
associated with each other and are often difficult to fully separate, despite the
common efforts by many workers to isolate one from the other. Both phases
contribute towards sorption of pesticides depending on their relative abundance
in soil/sediments, their chemistries and the chemical nature of the pesticide
molecules. The complex interactions and heterogeneities associated with the
soil solid phase contribute to the large degree of variation in the Koc parameter
often used to extrapolate the pesticide sorption estimate between soils. One
reason for popularity of the Koc model has been ease of its use and absence
of any other similar approach that is more comprehensively based on soil
properties. Therefore, despite the general recognition in literature of the role
of organo-mineral interactions in determining sorption of pesticide, sorption
estimates based on a broad range of soil properties have been missing. In this
regard, the IR with chemometrics may be worth exploring.

The examples presented in this paper show that both MIR and NIR
spectroscopy are attractive approaches for rapid assessment of pesticides sorption
in soils. In several studies, the assessment by IR-PLS was found to be superior
to the Koc model, on the basis of not only the accuracy of prediction, but also
being a direct estimation of Kd based on the integrated properties of organic
and mineral matter. The Koc approach on the other hand uses an intervening
parameter, which considers only one soil property i.e. foc. Furthermore, IR-PLS
approach is attractive not only because it allows integration of a range of soil
properties (amount and nature of organic carbon as well as mineral matter) in
Kd estimation, but also being a relatively high-throughput, cost-effective and
easy-to-use technique. While the IR-PLS approach is promising, its broad-based
applicability is yet to be demonstrated fully. Further work is needed to assess the
transferability of the sorption data predicted by this approach between soils from
different regions.
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Chapter 13

Quantifying Transient Sorption Behavior
of Agrochemicals Using

Simple Experiments and Modeling

Steven A. Cryer*

Enabling Capabilities Technology Center, Dow AgroSciences LLC,
9330 Zionsville Road, Indianapolis, Indiana 46268

*E-mail: sacryer@dow.com.

Sorption and desorption of an organic chemical to/from
vegetation or soil manifest different behavior over time.
Pesticide mobility in soil and/or released to the atmosphere
is strongly coupled to the chemical’s sorption characteristics,
altering the pesticide transport in various environmental
matrices (soil, air, water). A modified soil column batch
experiment was designed to measure the transient sorption and
desorption nature for a wide variety of pesticides in soil. This
experimental system minimizes many shortcomings associated
with obtaining sorption parameters through fitting saturated soil
column observations with an advective−dispersive transport
equation. Experimental observations are used to explore
different sorption/desorption algorithms, offering insight and
recommendations for appropriate algorithms that capture the
transient sorption nature for a specific pesticide. For example,
a second-order soil sorption kinetic model and the two-site
kinetic/equilibrium model were found to yield reasonable
comparisons to experimental observations for a highly sorbed
insecticide (chlorpyrifos). Although the two-site model can
give excellent agreement between experiment and model
predictions, this may just be a consequence of the additional free
parameter used to “curve fit” the solution to experimental data.
It’s possible other simpler non-equilibrium sorption-desorption
models offer similar comparison to experiment, and the
basic experimental system used here can yield insight into
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the applicability of different proposed sorption-desorption
mechanisms. Mechanistic models for environmental fate often
incorporate many different sorption algorithms for the user to
choose from. However, the robustness and versatility of the
2-site model, with its ability to recover equilibrium sorption
in the appropriate limit, indicate this popular algorithm should
be standardized in mechanistic and regulatory pesticide fate
models. Examples of the modeling impact of transient sorption
on pesticide leaching using the one-dimensional finite element
HYDRUS model are provided.

Introduction

Field studies are often used to provide guidance and insight into the fate
of a pesticide. However, field studies are expensive and are limited in scope
with respect to the semi-infinite edaphic, climatic, and agronomic parameter
combinations that are inherent from regional variability. A cost effective
alternative to understand pesticide fate under parametric uncertainty is the use
of mechanistic modeling. Here the chemistry and physics of the processes are
appropriately characterized by mathematical representations of these phenomena.
Models often account for complex mechanisms such as non-linear chemical
degradation and/or transient sorption and desorption of the pesticide to/from
soil, pore-water, leaf surfaces, and so on, while providing insights for pesticide
transport and exposure to organisms.

Sorption is the process for a pesticide to partition or bind to environmental
matrices via chemical and physical mechanisms. The most common experiment
for sorption is to spike a pesticide into the water phase for a system containing
water and soil. Following agitation over a prescribed time period (e.g., 24-hrs),
the pesticide mass in the aqueous phase (Couter) is measured, and by difference the
pesticide partitioned into the soil phase (Csorbed) is determined. Over the time scale
of the experiments, pesticide degradation is often negligible and therefore sorption
is characteristic of the partitioning between the bulk aqueous phase/soil pore water
with that of soil solids, Figure 1.

Many common environmental fate and modeling practices often assume
the simplest of algorithms such as i) pesticide dissipation is governed by first
order kinetics, ii) instantaneous equilibrium sorption, and iii) soil properties are
uniform with depth. Many of the commonly used pesticide dissipation models
account for this simplistic analysis but often require more complex algorithms
to be implemented if realistic predictions of pesticide fate are to be made.
Sorption is one of the many mechanisms responsible for overall dissipation,
and coefficient(s) characterizing sorption can be used for qualitative comparison
with other compounds to rank the importance of appropriate environmental
pathways. Pesticide mobility is strongly tied to the pesticide’s sorption and
degradation characteristics, and the real benefit from incorporating generic and
refined algorithms is in selecting the “right” mechanism for use in predictive,
mechanistic modeling for the fate of the pesticide.
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Figure 1. Pesticide sorption experiment for water-soil matrices.

For a conventional soil column experiment, a cylindrical column is packed
with soil and capped at both ends. The soil is saturated via a continuously flowing
volume of water, entering at one end of the column and exiting out the other end.
A chemical is injected at the entrance over a certain injection time to create a finite
chemical pulse. Analysis for this type of experiment includes: i) concentration
of the chemical leaving in the effluent and ii) following the experiment, the
sectioning and analysis of chemical resides at various depths in the soil column. If
no sorption or degradation occurs within the soil, then the entering chemical pulse
will remain unchanged as the pulse propagates through the column. Pesticide
dispersion, sorption and dissipation alter the shape and concentration levels
of the initial pulse to something different as the pulse propagates through the
soil column, Figure 2. Sorption characteristics of the pesticide in soil can alter
the breakthrough times of the solute pulse and the pulse shape as it exits the
column. Thus, knowledge of the various mechanisms involved with pesticide
sorption/desorption can be inferred through algorithm choice and mechanistic
models to match experimental observations.

A realistic prediction of pesticide environmental fate in various environmental
matrices is dependent upon both the correct mathematical descriptions of
the mechanisms and in the availability of accurate transport properties that
characterize the mathematical expressions. Even complex models can be
partially parameterized using curve fitting tools such as CXTFIT (1, 2) where
input parameters are adjusted until experimental observations match simulation
predictions through minimization of the sum of squared error. If the number of
degrees of freedom is large, then using an optimization routine such as CXTFIT
is appropriate. However, often physicochemical properties associated with
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degradation and sorption can be measured in independent lab experiments. This
work describes an experimental setup where transient sorption and desorption
can be addressed that minimizes several of the shortcomings of traditional soil
column experiments. These measured sorption parameters can be used in many
existing pesticide fate models or easily incorporated into others.

Figure 2. Characteristic soil column experiment with typical solute effluent
concentration measurements leaving the column.

Methods and Materials

Sorption and desorption of an organic chemical from a solid substrate such
as soil or foliage is expressed as the rate of chemical change between various
environmental compartments. A simple material balance for each compartment
can be written as

These material balance equations lead to a coupled system of ordinary
differential equations (ODEs). For typical air/soil environments, the
environmental compartments are soil (solid), pore water (aqueous), and vapor,
with the generation and consumption terms of eq. 1 are often zero. If transport
into the air (e.g., volatility) from soil and water is small, then the environmental
compartments where pesticide mass can move is summarized in Figure 3(a).Often
the soil is broken down into two regions where one region is governed by
equilibrium sorption (I) while the other has transient sorption governed by kinetic
algorithms (II), Figure 3(b). The arrows in Figure 3 are indicative of mass
movement between compartments.

For the aqueous compartment of Figure 3(a), eq. 1 can be written as
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where C is the concentration of the solute in water, S the concentration in the soil
(solid) and g1(C) and g2(S) are functions dependent upon the concentrations C and
S, while k1 and k2 are the rate constants that parameterize the magnitude of mass
transfer between the aqueous and solid compartments, respectively. By overall
mass balance

where C0 and S0 are the initial concentration of pesticide in the aqueous and solid
phase, respectively. The other compartment transient solute concentration can be
determined once C (or S) is known.

Figure 3. Environmental compartments for pesticide transport assuming
volatility is negligible.

Simple functional forms for g1(C) and g2(S) are assumed as summarized
in Table I, where the material balance equations for solute the aqueous phase,
representing transient sorption and desorption, can be written as

where m and n are specific integers used in this analysis, and k1 and k2 represent
the rate constants for sorption and desorption, repectively (Figure 3 (a)).

More complex sorption/desorption algorithms have been proposed (3, 4).
Several of these sorption models are now incorporated into current environmental
fate modeling tools. Here, the soil is broken into two regions where it has been
postulated one region is governed by equilibrium partitioning (sorption) and the
other region kinetically governed, Figure 3 (b). Material balance equations are
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written for both sites in the 2-site kinetic/equilibrium sorption model. Thus, the
mass transfer system of equations for sorption/desorption for each site can be
written as

subject to SI(0) = SII(0) = 0.
Here,
kd = equilibrium partion coefficient for soption sites (which is the ratio of the

rate constants k1 to k’1 at equilibrium)
ks = rate constant for kinetically governed sorption sites
fI = fraction of type I (equilibrium sorption) sites [and (1-fI) is the number of

type II (kinetically governed sorption sites)].

Table I. Descriptions of Kinetic Sorption/Desorption Algorithms Explored

Algorithm g1(C) g2(S)

1st order sorption C 0

2nd order sorption C2 0

1st order sorption w/ 1st order desorption C S

All of the sorption/desorption material balance differential equations
described herein (Table I, Equations 2-6) can be integrated analytically, with
results summarized in Table II.

Experiment

A modified soil column batch experiment is proposed to measure sorption
characteristics. The experiment consists of a 500 mL three neck flask where the
aqueous phase is continually recirculated through a small soil column (i.d. 2.4 cm),
Figure 4. In contrast to a traditional soil column experiment where the effluent
leaving the columns is analyzed for solute and discarded, here the solution is
being mixed and recirculated back to the top of the column. The aqueous phase
is sampled over time via the septum port on the vessel, with aliquots analyzed
for pesticide residues. This experiment is somewhat analogous to a traditional
batch chemical reactor, but instead of a chemical reaction, sorption and desorption
is acting as sources and sinks that impact the availability of the solute in the
bulk aqueous system. Pesticide is initially supplied to the aqueous bulk phase
(i.e., injected at t=0) and subsequently decreases with time as governed by the
sorption/desorption processes occurring in the short soil column.
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Table II. Analytical Solutions to the Various Sorption/Desorption Algorithms
Used in This Analysis

The advection-dispersion equation is traditionally used to back calculate the
sorption parameters based upon the experimentally observed solute breakthrough
curve from large soil columns. Short residence times for the effuent tranporting
through the soil column minimizes many of the shortcomings of traditional,
full size soil columns while simplyfying model fitting. Specifically, the small
volume of soil (~12.9 cm3) in this experimental apparatus provides a higher
likelihood for homogeneous dispersion of the soil than much larger columns
could afford (e.g., minimizes regions within the soil where preferential flow may
occur). A small soil column also lowers the delay time for effluent entering and
leaving the column (~ 1 minute) which is several orders of magnitude faster
than conventional sorption kinetic experiments. Examples and observations for
the insecticide (chlorpyrifos) sorption characteristics in Cecil soil are provided.
Additional details of the experimental procedure are found elsewhere (5).

Transport Modeling

Quantification of experimental observations for sorption provides insight
into appropriate mechanisms and necessary mathematical descriptions used to
describe the phenomena. Many of the regulatory pesticide soil fate models
have algorithms for equilibrium (Freundlich linear/nonlinear isotherms) and
time dependent sorption. FOCUS (6) models PELMO (7, 8) and PEARL (9,
10) both contain time dependent sorption algorithms. The current incarnation
of the U.S. regulatory model PRZM3 (11) only has the option for equilibrium
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sorption mechanism for water/soil systems, but does allow for different pesticide
degradation descriptors. However, PRZM3 has been modified for European use
to include time dependent sorption and can be found elsewhere [FOCUS PRZM
(GW)], http://focus.jrc.ec.europa.eu/gw/models/PRZM/download.html].

Figure 4. Experimental apparatus used to quantify chlorpyrifos sorption.
Reproduced with Permission from J. Agric. Food Chem. Vol 53, No. 10, 2005.

An alternative approach for analyzing experimental sorption data is
using the HYDRUS model. HYDRUS (http://www.pc-progress.com/en/
Default.aspx?hydrus-1d), a public domain soil physics model, solves the
conservation equations of water, heat and solute transport in variable-saturated
media (12). HYDRUS sorption models include equilibrium and multiple
non-equilibrium routines, and also uses a discretized version of the Richards
equation, a more realistic representation for water movement than the simplistic
tipping bucket water balances of other models. HYDRUS has been shown to
adequately address the transient flow of water through soil (13, 14). Simulation
results using simple and complex forms for degradation and sorption illustrate
the dynamic range of results that ensue and suggest what can be gained through
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refinement in mechanistic predictions over simpler approaches. Additional work
involving HYDRUS can be found elsewhere (15). HYDRUS-1D is used to
simulate solute flow for a hypothetical pesticide in a saturated soil column, Figure
5.

Figure 5. Geometry and boundary conditions for example problem in saturated
flow through a soil column.

The equilibrium partition coefficient for chlorpyrifos (kd) for a soil/water
system is large (16); indicating chlorpyrifos is immobile in soil. Thus, a
hypothetical pesticide was defined that has the propensity to be transported
through saturated soil pores of a soil column leaching experiment to illustrate
differences in leaching potential that can arise should an incorrect sorption
mechanism be assumed via using the HYDRUS 1-D model.

In the present study, five locations from the soil column entry to exit are
defined as observation points where solute concentrations, as it passes through the
soil column, are simulated and recorded byHYDRUS. Physicochemical properties
of the hypothetical pesticide and soil column experimental geometry, used for
HYDRUS simulations, are summarized in Table III for saturated flow through soil.
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Table III. Physicochemical Properties of a Hypothetical Solute and Column
for the Saturated Column Solute Transport Example Problem

Parameter Magnitude (or model)

Porosity Model van Genuchten-Mualem

Column Length (L) 25 cm

Soil Type Loam

Residual soil water content 0.078

Saturated soil water content 0.0448

Parameter “α” in soil water retention function 0.036 [cm-1]

Parameter “n” in soil water retention function 1.56

Saturated hydraulic conductivity [LT-1] 2.65 [cm d-1]

Soil bulk density 1.32 g cm-3]

Adsorption isotherm coefficient (kd) 0.25 [g-1 cm3]

Solute Diffusion Coefficient 0.696 [cm2 d-1]

Solute Concentration of Pulse 125 [g d-1]

Solute Pulse Duration 2 [d]

Results

Experimental

Comparison between the sorption/desorption algorithms and experimental
observations for chlorpyrifos are seen in Figure 6, where it is found that
chlorpyrifos readily sorbs quickly over the first 6-h interval. The transient
sorption/desorption algorithm that most closely approximates experimental
observations is the 2nd order sorption only model. The worst comparison is
between transient Freundlich like algorithms (e.g., 1st order sorption, 1st order
sorption with 1st order desorption) which overestimate the sorption magnitude
for chlorpyrifos. A compromise that predicts the correct equilibrium sorption
behavior while slightly over predicting the sorption potential early on for
chlorpyrifos is the two-site kinetic-equilibrium sorption model. Data obtained
from this novel experimental apparatus can be used to easily infer or select the
best sorption/desorption algorithms for a specific combination of solute/soil
properties. Thus, mechanistic environmental fate modeling can be refined
by using the appropriate sorption/desorption algorithms that best describe
experimental observations.

250

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Figure 6. Comparison of experimental observations obtained from the
recirculation apparatus to multiple proposed sorption mechanisms.

Modeling

Simulation results of HYDRUS-1D, using the properties summarized in
Table III for a saturated soil column, are provided in Figures 7-8. Figure 7(a)
represents simulation results when equilibrium sorption is assumed. The solute
peak disperses uniformly through the soil column from top to bottom. Figure
7(b) illustrates the impact of kinetically governed sorption (2-site model), both in
impacting the breakthrough time for the solute pulse (x=L) and the non-symmetric
dispersion characteristics of the pulse throughout the column.

A representative simulated result for the breakthrough pulse of solute is
provided in Figure 8. Clearly the choice of sorption/desorption algorithms impact
the movement of the solute through saturated soil as seen by the predicted solute
breakthrough curves leaving the column. This example illustrates the importance
of using the correct sorption algorithm(s) if a realistic prediction of environmental
transport (leaching) of a solute is sought. Experimental observations are necessary
to address appropriate sorption algorithms specific for the soil and pesticide being
investigated.

251

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Figure 7. Breakthrough curves for the hypothetical pesticide (Table III) when
equilibrium sorption (a) and the 2-site model (b) are assumed. The equilibrium
soil/water partition coefficient (kd) is constant for all simulations (a), and fI =

0.25, ks = 0.1 d-1 for the 2-site model (b).

Figure 8. Simulated soil column breakthrough curves given different sorption
algorithms for the hypothetical pesticide. 2-site model, f I= fraction of sorption
sites (equilibrium), ks = rate constant for kinetically governed sorption sites [d-1].

252

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Conclusions

Chlorpyrifos clearly demonstrates non-equilibrium sorption/desorption
behavior as observed from a modified soil column batch experiment designed for
this analysis. Multiple soil sorption/desorption models were proposed that include
the 2-site kinetic/equilibrium (most versatile but having 3 free parameters), a
1st order sorption with first order desorption (2 free parameters), a second and
first order kinetic sorption (1 free parameter) with no desorption, and equilibrium
sorption. For many/most of the proposed sorption/desorption models, analytical
solutions to the governing material balance equations exist or can be easily
obtained. Thus, incorporation of more refined algorithms for sorption/desorption
can easily be implemented into existing pesticide environmental fate models
(should they not currently exist), and a robust environmental fate model, properly
parameterized, can lead to better, more refined predictions of pesticide fate.

The 2-site kinetic/equilibrium sorption model has been around for decades
and should be consided in the sorption algorithms that are available in
regulatory models should simpler algorithms prove inadequate. Even though
the experimental and sorption modeling results for chlorpyrifos described here
suggests sorption is a 2nd order kinetic process, most studies have focused on
first or near first order approximations for the modeling of sorption. This is true
for the two-site kinetic/equilibrium sorption model. The two site algorithm does
increase the number of parameters by 1 (e.g., the fraction of sorption sites that
are governed by kinetic behavior, fI). However, fI can be set to one to recover the
traditional equilibrium sorption algorithm. The PRZM3 model has been modified
to incorporate the 2-site/kinetic sorption algorithm (PRZM3-Kinetic and the
FOCUS model PRZM-GW) (17), but this sorption algorithm is now standard
for most realistic pesticide fate and transport models (e.g.,HYDRUS). PRZM3
alternative models are probably a better choice than the original PRZM3 since
these models offer more representative sorption algorithms then what the original
PRZM3 equilibrium sorption approximation can provide.
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Chapter 14

Spatial Variability of Pesticide Sorption:
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Pesticide fate models are useful in testing the impact of
agricultural management practices on the quality of water
resources. The sorption parameter is among the most sensitive
of the input parameters used by pesticide fate models.
Numerous pesticide sorption experiments have been conducted
in the past 75 years, but mainly focussed on surface soils. The
batch equilibrium procedure is a conventional technique to
quantify sorption parameters. In this chapter, we summarize
selected batch equilibrium studies to demonstrate that sorption
parameters vary widely among sampling points within
soil-landscapes. We recognize that probability density functions
(PDFs) have been incorporated into stochastic simulations of
pesticide fate to help account for sorption spatial variability, but
also show that PDFs can vary widely for different pesticides
and/or soil depth. We propose that near-infrared spectroscopy
(NIRS) can be used in combination with batch equilibrium
techniques to more rapidly quantify the sorption variability
of herbicides. We demonstrate that NIRS can be integrated
into the Pesticide Root Zone Model version 3.12.2 to improve
spatial resolutions for calculating the mass of herbicide leached
to depth at the field scale. Better quantification of herbicide
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sorption variability and hence leaching potential will provide
greater confidence in using pesticide fate models in regulatory
practices, as well as in management programs that promote both
sustainable agriculture and adequate environmental protection
of water resources.

Introduction
Pesticides have the potential to move from their application target into the

atmosphere, surface water and groundwater (Table 1). Pesticides may become
airborne through application drift (1) post-volatilization losses from land, water, or
vegetative surfaces (2) and on wind-eroded soil (3). Pesticide loadings to surface
waters are due to atmospheric wet and dry deposition (4–6), storm-induced surface
runoff (7, 8) and groundwater recharge (7). Many factors can influence the risk
of groundwater contamination by pesticides (9). Multivariate statistics on water
quality data collected at a national scale in the United States have shown that the
likelihood of detecting a specific pesticide in shallow groundwater is greater for
pesticides that have small sorption parameters (10).

Table 1. Number of Studies That Tested for a Given Herbicide (# Studies) in
Environmental Samples (Surface Water, Groundwater, Rain, or Air) and
the Percent of Studies That Reported Detecting That Herbicide in Their

Study (% Detect)

Pesticide # studies % detect References

2,4-D 19 100 (4, 6, 7, 12–27)

2,4-DB 4 67 (14, 15, 19, 26)

alachlor 3 67 (6, 16, 23)

atrazine 7 83 (6, 14, 16, 19, 23–25)

bromoxynil 16 100 (4, 6, 7, 12, 14, 15, 18, 19, 21–28)

clopyralid 6 100 (6, 19, 21, 24, 26, 27)

dicamba 18 100 (4, 6, 7, 12–15, 18–28)

dichlorprop 8 100 (14–19, 21, 22, 24, 26)

diclofop-methyl 3 80 (13, 18, 21)

ethalfluralin 7 83 (6, 16, 19, 21, 23, 25, 27)

ethametsulfuron
methyl 1 100 (24)

fenoxaprop-p-ethyl 3 67 (13, 19, 21)

glufosinate
ammonium 2 50 (6, 26)

Continued on next page.
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Table 1. (Continued). Number of Studies That Tested for a Given Herbicide
(# Studies) in Environmental Samples (Surface Water, Groundwater, Rain,
or Air) and the Percent of Studies That Reported Detecting That Herbicide

in Their Study (% Detect)

Pesticide # studies % detect References

glyphosate 3 100 (6, 26, 29)

imazamethabenz 3 100 (13, 18, 24)

imazethapyr 2 100 (19, 24)

MCPA 16 100 (6, 12–19, 21–28)

MCPB 5 100 (14, 15, 22, 24, 27)

mecoprop 7 100 (6, 18, 19, 21, 24, 26, 27)

metolachlor 5 100 (6, 14, 16, 23, 25, 27)

metribuzin 4 100 (21, 22, 24, 27)

metsulfuron-methyl 2 100 (24, 27)

picloram 5 100 (13, 14, 22, 24, 27)

quinclorac 1 100 (19)

simazine 3 100 (14, 24, 27)

sulfosulfuron 2 100 (24, 27)

thifensulfuron methyl 2 100 (24, 27)

triallate 14 100 (4, 6–8, 12–14, 16, 19, 21–25, 27)

tribenuron-methyl 1 100 (24)

trifluralin 15 93 (6, 7, 12–16, 18, 19, 21–25, 27, 28)

Data retrieved from Western Canadian studies published in refereed journals over a twenty
year time span (1991-2011) (modified from Wilson (11)).

Pesticide concentrations measured in groundwater samples are usually
reported to be below the level of concern to the health of organisms, although
compound specific levels have exceeded the European groundwater quality
standard of 0.1 µg/L (30, 31). Groundwater contamination is concerning, as more
than 2.7 billion people rely on groundwater for potable water, including 75% of
the population in Europe (32). A common pragmatic approach to assessing the
spatial and temporal risk of potential water contamination by pesticides is to use
pesticide fate models. For example, when the region of interest is large such as
the agricultural land base of Canada, pesticide fate models are useful in assessing
the effectiveness of beneficial agricultural management practices in protecting
ground water resources (33). Pesticide fate models can augment large-scale
water monitoring programs in the regulatory practices of pesticide environmental
exposure assessments (34).
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It is well known that sorption parameters are among the most sensitive
input parameters in calculating pesticide transport to depth (35–37). Hence,
field-specific data on sorption parameters have been found to be more important
to the refinement of risks assessments than the choice of the pesticide fate model
itself (38). Accurately quantifying the spatial variability of sorption parameters
is important for better understandings of the uncertainty in the application of
pesticide fate models over multiple spatial scales (e.g., from field to regions). In
this chapter, we discuss the spatial variability of sorption parameters as reported
by studies operating at the field, catchment and regional scales. We also provide
an example of how to use near-infrared spectroscopy (NIRS) to estimate sorption
variability for simulation inputs into the Pesticide Root Zone Model version
3.12.2 at the field scale.

Measurement and Quantification of Sorption

Sorption is a general term that refers to an increase in the concentration
of a pesticide in the solid phase resulting from a reduction in the concentration
of a pesticide in the liquid or gas phase. Pesticide sorption by soil is most
commonly estimated using the batch equilibrium method (39), which provides
for a measurement K, that is referred to as either the sorption parameter or
partition constant, and has been used for more than five decades (40). Sorption
of pesticides by soil is a rapid process, particularly in batch experiments (41),
with the greatest sorption occurring within minutes to a few hours, and then
decreasing over time with the majority of studies using 24 h as a default time for
reaching equilibrium (39). In reality, sorption continues to increase slowly over
time for most pesticides with studies showing an increase in sorption parameters
by a factor up to 3.8 over 100 days (42). The OECD guideline 106 (43) gives
a detailed description of the batch equilibrium method. In essence, a pesticide
solution is added to air-dried soil in a test tube. The pesticide solution is usually
prepared in 0.01 M CaCl2 to minimize the dispersion of organoclay complexes
(44) and to allow easy separation of solid and liquid phases, and the test tube is
rotated to establish chemical equilibrium in the slurry. The concentration of the
pesticide in the equilibrium solution (Ce) is measured, while the concentration of
the pesticide in soil at equilibrium (Cs) is usually calculated using the difference
between the pesticide mass in the initial solution and the pesticide mass in the
solution at equilibrium.

When the batch equilibrium procedure is carried out using a single pesticide
concentration, the distribution constant Kd, is calculated by Cs/Ce. Kd values
can be influenced by the pesticide concentration used and tend to decrease as the
concentration of the initial pesticide solution increases because the competition by
pesticide molecules limits available sorption sites (45). In this case, the measured
isotherm at different equilibrium concentrations displays a nonlinear pattern, often
described by the Freundlich equation.

A sorption isotherm is applied, when a range of initial pesticide concentrations
are used, to yield a single sorption parameter. Four (46) to seven (47) initial
pesticide concentrations are typically used with the best fit to the sorption isotherm
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often being the Freundlich rather than the Langmuir equation (48). The Kf
(Freundlich constant) is calculated by nonlinear regression using the Freundlich
equation in its log transformed form: Log Cs = log Kf + 1/n log Ce, where 1/n is
the slope describing nonlinearity. Linear sorption is observed when 1/n = 1, and
it is only in this case that Kd = Kf. The exponent 1/n is usually greater than 0.7
(39), and very few experimental studies have reported values of 1/n greater than
1 for soils (49). Units of Ce and Cs should be chosen so that that isotherm lines
cross at Ce = 1, which is the point where Kf is evaluated (50), as non-linear and
linear isotherms intersect at Ce = 1. The unit of Kf varies depending on which
units are chosen for Ce and Cs. This makes it difficult to compare Kf values
among different studies, although a method has been developed to overcome this
challenge (51).

Kd can be divided by the fraction of organic carbon in soil to calculate
the soil organic carbon normalised sorption coefficient, Koc. Researchers have
proposed methods that allow Koc to be measured independent of soil such as
by high-performance liquid chromatography (52). Koc can also be calculated
using empirical regression equations that include, as the dependent variables, the
n-octanol-water partition coefficient (Kow) or water solubility (S) of the pesticide
(53). The slope and intercept in these equations are influenced by the type of
pesticides included in the regression (54). Even when the same equation is used,
the calculated Kocmay not be consistent among studies because for each pesticide,
there is a surprisingly wide variation in the data reported for Kow and S (55).

With few exceptions, pesticide sorption parameters have been almost
exclusively determined without considering the competition of other pesticides
for sorption sites in soil. Nevertheless, studies have demonstrated that the sorption
of some pesticides is reduced when other pesticides are competing for sorption
sites in soil (48, 56–58). Inorganic chemicals can also compete with pesticides
for sorption sites in soil, which has been observed for the herbicides diquat +
paraquat and calcium (59), glyphosate and phosphorus (60, 61), glyphosate and
cadmium (62), and propisochlor and copper (63).

Sorption Spatial Variability and Influencing Factors

Realization that the pesticide sorption varies among soil types arose as part
of experimental work that tested differential pesticide bioactivity between soils
(64–66). Numerous pesticide sorption experiments have been conducted in the
past 75 years with most focussing on surface soils. Surprisingly, relatively few
studies have defined the spatial variability in sorption parameters, and these studies
have predominantly focussed on herbicides at the field scale (Table 2). The field
scale variation in sorption parameters can be as large as that observed for the
regional scale. For example, for soils in the Canadian Prairies, Kd values for 2,4-D
ranged from 0.6 to 12.5 L/kg (n=72) in surface horizon samples taken along a
360-m long slope in an agricultural field (67) and from 0.6 to 14.5 L/kg (n=41) in
surface horizon samples taken within a series of ecozones spanning a 660,000 km2

area (68).
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When examining the spatial variability of herbicide sorption in fields,
catchments or regions, it is common for studies to evaluate whether the coefficient
of variation (CV) of Koc is smaller than that of Kd. By normalizing for organic
carbon, it was hypothesized that Koc should have a smaller coefficient of variation
(CV) among soil types than Kd (78), but in only 55% of the comparable cases
reported in Table 2 this is true. In fact, it is seldom the case for glyphosate whose
sorption is weakly or not significantly associated with soil organic carbon (SOC)
(37, 69).

Table 2. Studies Examining the Spatial Distribution of Herbicide Sorption
Parameters. Mean and Coefficient of Variation (CV%) Values As Reported
in the Reference Stated with the Exception of Singh (69) for Which the

Values Were Calculated Based on Spreadsheets Containing Raw Data. H =
Horizon, Which Can Be A, B or C Horizons, n=Number of Samples, F=Field,
U=Upper Slopes, M=Mid Slopes, L=Lower Slopes. The Label A-Horizon Is
Treated as Synonymous to Surface Soil. S = Subsurface Soil Which Is 40-50

Depth in Oliver (70) and 50-60 cm Depth in Rodrigues-Cruz (71).

Sampling
protocol

H n Kd
mean

Kd
CV%

Koc
mean

Koc
CV%

Reference

2,4-dichlorophenoxy acidic acid

A 72 4.21 50 211 26

B 72 0.92 113 176 131

F transect

C 72 0.33 55 89 34

(67)

A 121 2.90 48 82 30

B 80 0.60 84 40 56

F landform

C 116 0.29 76 30 69

A 110 1.98 42 98 30

B 75 71.39 180 118 58

F landform

C 113 4.36 45 256 182

(69)

F grid - U A 98 0.9 44 91 37 (37)

F grid - M A 128 1.0 50 108 48

F grid – L A 61 1.6 25 140 30

Regional A 123 5.8 89 235 59 (68)

Atrazine

Continued on next page.
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Table 2. (Continued). Studies Examining the Spatial Distribution of
Herbicide Sorption Parameters. Mean and Coefficient of Variation (CV%)
Values As Reported in the Reference Stated with the Exception of Singh (69)
for Which the Values Were Calculated Based on Spreadsheets Containing
Raw Data. H = Horizon, Which Can Be A, B or C Horizons, n=Number
of Samples, F=Field, U=Upper Slopes, M=Mid Slopes, L=Lower Slopes.
The Label A-Horizon Is Treated as Synonymous to Surface Soil. S =

Subsurface Soil Which Is 40-50 Depth in Oliver (70) and 50-60 cm Depth in
Rodrigues-Cruz (71).

Sampling
protocol

H n Kd
mean

Kd
CV%

Koc
mean

Koc
CV%

Reference

A 121 16.73 51 476 37

B 80 3.87 62 270 32

F landform

C 116 2.42 49 259 46

A 110 4.36 45 213 33

B 75 1.14 39 247 49

F landform

C 113 0.76 42 568 233

(69)

F grid A 241 5.2 35 181 21.2 (72)

Catchment A 51 0.80 29 - - (73)

A 19 2.67 121 191 116Regional

S 18 0.84 132 119 114

(70)

Bentazone

A 20 0.06 26 - -F grid

S 20 0.11 44 - -
(71)

Carbaryl

F grid A 27 10.50 115 522 147 (74)

Diuron

Regional A 43 9.6 161 407 63 (75)

Regional A 101 6.49 140 315 84 (76)

Glyphosate

A 121 43.37 65 1561 91

B 80 61.04 51 5217 82

F landform

C 116 48.09 38 5445 52

A 110 71.39 180 4903 187

B 75 94.51 136 20,540 130

F landform

C 113 73.87 84 65,411 322

(69)

Continued on next page.
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Table 2. (Continued). Studies Examining the Spatial Distribution of
Herbicide Sorption Parameters. Mean and Coefficient of Variation (CV%)
Values As Reported in the Reference Stated with the Exception of Singh (69)
for Which the Values Were Calculated Based on Spreadsheets Containing
Raw Data. H = Horizon, Which Can Be A, B or C Horizons, n=Number
of Samples, F=Field, U=Upper Slopes, M=Mid Slopes, L=Lower Slopes.
The Label A-Horizon Is Treated as Synonymous to Surface Soil. S =

Subsurface Soil Which Is 40-50 Depth in Oliver (70) and 50-60 cm Depth in
Rodrigues-Cruz (71).

Sampling
protocol

H n Kd
mean

Kd
CV%

Koc
mean

Koc
CV%

Reference

F grid - U A 98 108.2 28 11,183 30

F grid - M A 128 133.6 36 14,863 43

F grid - L A 61 118.7 29 10,891 33

(37)

Imazethapyr

F grid A 35 1.56 69.2 - - (70)

Isoproturon

Catchment A 51 0.85 30.0 - - (73)

A 20 1.32 7 - -F grid

S 20 0.34 50 - -
(71)

Mecoprop

A 20 0.26 26 - -F grid

S 20 0.07 24 - -
(71)

Metamitron

Catchment A 51 0.96 30.0 - - (73)

Napropamide

F grid A 36 2.01 31 363 38 (77)

Phosalone

F grid A 27 172.18 131 9504 162 (74)

For the twelve different herbicides examined in various studies (Table 2),
the reported CV of Kd has ranged from 7 to 180% but that of Koc from 21 to
322%. For herbicides whose sorption is significantly associated with SOC, soil
organic matter (SOM) characteristics largely determine the amount of herbicide
sorbed per unit organic carbon. Techniques, ranging from conventional chemical
fractionation methods to solid state Cross Polarization and Magic-Angle Spinning
13C-Nuclear Magnetic Resonance applied on whole soils, have been used to
derive SOM chemical, physical and structural parameters for correlation analyses
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with Koc values. For non-ionic herbicides, e.g. carbaryl, phosalonema (74) and
diuron (79) but also for ionisable herbicides such as 2,4-D (80) an increased SOM
aromaticity results in increasing Koc values.

Pesticide sorption parameters in farm fields vary because sorption processes
respond to the heterogeneity of soil properties that exists across slope positions
and with soil depth. Intrinsic factors, such as irregularities in parent material
deposition and weathering, as well as vertical pedological processes of leaching
and bioturbation, induce variations in these soil properties in fields (81, 82). Thus,
for a given herbicide, there can be large differences in the CV of Kd depending on
the field sampled (e.g., glyphosate (69)), the slope position sampled (e.g., 2,4-D
(37)), and the sampling depth (e.g., 2,4-D (67)) (Table 2). Sorption parameters
are significantly associated with SOC content (37, 67, 72, 73, 83, 84), soil pH
and clay content (37, 67, 72, 83). Also, in two field studies (67, 69), variations in
2,4-D Kd were particularly strong in the B-horizon (Table 2), possibly because the
presence of iron oxides is known to increase 2,4-D sorption in soil (85, 86). Such
redoximorphic features only occur in soil profiles that showed evidence of poor
drainage and periodic reduction.

Extrinsic factors such as the cultivation of fields can influence soil properties
variations due to the redistribution of topsoil from upper slope to lower slope
positions by tillage (87). Soil redistribution by tillage can have a profound
impact on soil profile characteristics (88–90) and herbicide sorption (84, 90). For
example, in calcareous prairie landscapes that have been subjected to intensive
tillage practices for decades, soil profiles in upper slopes are usually entirely low
in SOC, but high in soil carbonate content and soil pH. In these landscapes, for
herbicides 2,4-D, glyphosate (84) and saflufenacil (90) Kd and Koc values have
shown to vary less with depth in soil profiles of upper slopes than lower slopes.

Topography is a soil-forming factor and affects the redistribution of water and
soil in soil-landscape and hence influences soil development and the characteristics
of the soil layers particularly the surface soil. Digital terrain modelling can be used
for quantitative morphometric characterization of landscapes with examples of
terrain attributes being slope gradient, slope aspect, horizontal, vertical and mean
curvatures (91) topographic and stream power index, and specific catchment area
(60, 92). It has been shown that the strongest dependence of soil properties on
topography arises within the surface layer to a depth of 30 cm (93). The r2 values
of regression equations describing the relation between topographic variables and
soil properties have been shown to vary from 0.39 to 0.82 in landscapes, with
predictions being most successful for SOC but also adequate for clay and soil pH
in several landscapes (94–98). Digital terrain models have been shown in some
cases to improve the predictions of fate parameters of herbicides in surface soils of
fields. Terrain attributes can explain 50 to 56% of the spatial variability of 2,4-D
Kd values in some landscapes (37, 98), but for landscapes in which the discharge
of solute-rich water from wetlands is a major soil-forming factor, the association
between terrain attributes and sorption parameters have been shown to be very
weak (69). In these cases, soil development is less controlled by surface processes.

The variation of pesticide sorption parameters in landscapes remains difficult
to predict because of the large variations in Kd and Koc values. Probability density
functions have been incorporated in stochastic pesticide fate simulations to help
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account for spatial variations in sorption input parameters. Modelers typically
assume that a normal (99), log-normal (100), or uniform (101) distribution
to describe variability in sorption parameters at the large scale. In reality,
nevertheless, the appropriate distribution for a particular pesticide in a particular
spatial unit is not well understood. We utilized data reported in a study by Singh
(69) in which 70 soil profiles were collected in an undulating to hummocky
terrains under grain and oilseed rotation and zero-tilled (16 ha). These profiles
were sampled by horizon, yielding 314 samples in total. These data show that
distributions vary widely among pesticides and mineral horizons (Figure 1). Thus
the best fit to distributions resulted in a range of probability density functions
(Table 3). The log-normal function provided a better fit to Kd and Koc data than
normal and uniform PDFs across all pesticides and mineral horizons (Table 3).

Figure 1. Probability distributions for 2,4-D, atrazine and glyphosate Kd and Koc
values by soil mineral horizon in a undulating to hummocky terrain in Manitoba,

Canada. Data described in Singh (69).
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Pesticide Fate Models

Siimes Kämäri (102) described 54 pesticide fate models. Thirteen of these
are one-dimensional deterministic models designed for the simulation of pesticide
fate at the field scale. These models are simpler than those that simulate pesticide
fate in two- or three-dimensions and thus have the advantage of requiring fewer
input data, and being more computationally efficient. One-dimensional models
are more readily used in regulatory and policy assessment at the large scale (33,
34, 103). Examples include the Pesticide Root Zone Model [1984], Groundwater
Loading Effects of Agricultural Management Practices [1987], Leaching
Estimation and Chemistry Model [1987], the Root Zone Water Quality Model
[1992], and Pesticide Emission Assessment at Regional and Local scales [2000].
Although designed as a deterministic model, one can incorporate probability
distribution to, for example, the Pesticide Root Zone Model, to account for input
parametric uncertainty (33).

Spatial variations in sorption parameters are not often considered in fate
modeling due to lack of quantitative data describing appropriate input parameters.
For example, batch equilibrium techniques are time-consuming and expensive
and this information is often unavailable. Thus, when deterministic modeling
approaches are used at the large-scale, sorption parameters are often estimated
from generic databases (103) or from regression equations based on soil properties
data (104). Alternatively, stochastic modeling utilizes probability density
functions often under the assumption that sorption parameters are independent of
soil properties (105), leading to large uncertainties in risk assessments (106).

Uncertainties in risk assessment could be more accurately accounted for by
using more efficient methods that, at a more reasonable cost, can rapidly measure
the sorption coefficients of large numbers of soil samples. NIRS is molecular
spectroscopy operating in the wavelength range 780 to 2500 nm. Substances
absorbing light in this region are generally those with covalent bonds between O,
H, C, and N. NIRS correlates the spectral data from a set of representative samples
with the chemical analytical data in the form of calibrations that are utilized to
predict future samples of the same type (107). NIRS is successful in predicting
a range of soil properties, including strong predictions for SOC content and clay
(108, 109). Hence, for fields and regions, NIRS has been successfully used to
estimate sorption coefficients for herbicides lindane, diuron (110), atrazine and 2,4-
D (111), illustrating the main strength of NIRS in estimating sorption parameters
of both nonionic and ionisable pesticides. Nevertheless, there are exceptions such
as the poor applicability of NIRS for estimating the sorption of glyphosate whose
sorption is often poorly correlated with SOC (Farenhorst unpublished data). The
application of NIRS and other spectroscopic techniques in estimating sorption
coefficients is further discussed in detail in Chapter 12 (112) in this volume.
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Table 3. Variation in Sorption Parameters and Soil Organic Carbon Content
in A, B and C Horizons and the Goodness of Fit (Chi-Square with P < 0.05)
for Probability Distributions (Best Fitted Distribution, Normal Distribution

and Log–Normal Distribution) Fitted to Data

Parameter Mean StDev CV
Best
fit

Best
Fit

Nor-
mal

Log-
Normal

Kd in A-horizon

2,4D 2.9 1.4 48 Pearson5 2.6 4.6 3.4

glyphosate 43.4 28.3 65 Gamma 4.6 78.6 7.6

Atrazine 16.7 8.5 51 ExtValue 1.8 12.2 3.0

Koc in A-horizon

2,4D 81.7 24.4 30 logistic 4.6 8.0 8.6

glyphosate 1560.7 1426.5 91 Pearson5 7.0 104.4 13.8

Atrazine 475.7 175.5 37 ExtValue 13.8 19.4 17.0

Kd in B-horizon

2,4D 0.6 0.5 84 Gamma 5.2 31.5 6.7

glyphosate 61.0 31.4 51 Lognorm 1.6 19.6 1.6

Atrazine 3.9 2.4 62 InvGauss 2.4 45.9 3.2

Koc in B-horizon

2,4D 39.8 22.2 56 ExtValue 6.7 12.0 9.0

glyphosate 5216.5 4276.6 82 InvGauss 2.1 65.4 67.0

Atrazine 270.2 85.4 32 Weibull 9.0 13.3 13.3

Kd in C-horizon

2,4D 0.3 0.2 76 ExtValue 2.8 43.1 8.0

glyphosate 48.1 18.5 38 BetaGeneral 2.6 18.3 19.1

Atrazine 2.4 1.2 49 Gamma 5.3 51.9 9.1

Koc in C-horizon

2,4D 29.5 20.4 69 Gamma 3.9 24.9 9.1

glyphosate 5444.7 2807.1 52 Pearson5 6.6 41.6 10.5

Atrazine 258.9 117.8 46 LogLogistic 5.7 29.3 7.4

(Data from Singh (69))

Here we provide an example of one of our recent studies (113) in which
we tested the feasibility of using NIRS to measure a large number of 2,4-D Kd
values for use as input parameters in Pesticide Root Zone Model version 3.12.2
(PRZM3). The study utilized samples from 309 soil horizons. In the example
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provided, spectra were recorded in triplicate for each 25 g soil sample using the
Foss NIRS Systems model 6500 spectrophotometer (Carl Zeiss, Jena, Germany)
equipped with a Rapid Content Sampler (RSC). Soil was presented in 5 cm
diameter glass petri dishes to collect data over the wavelength range of 1100
to 2500 nm at 2 nm intervals. This results in 700 absorbance values for each
spectrum. Triplicate spectra were obtained for each sample by rotating the petri
dish 120 degrees between scans. The triplicate spectra for each sample were
imported into Unscrambler® multivariate statistical analysis software version
9.8 (2008, CAMO Process ASA) and averaged. Then 2,4-D Lab-Kd values,
determined by batch equilibrium procedures in the laboratory for each sample,
were added to the Unscrambler file to become the constituent. Partial least
squares regression (PLS1) was used to develop calibrations for 2,4-D Lab-Kd
values. Calibrations used the test set method in which all the samples were sorted
from low to high values for the constituent and were divided into calibration
(two-thirds of the total samples) and validation (one-third of the total samples) by
selecting every third sample for the validation set. This results in approximately
the same distribution of values in the calibration and validation sets. A total of
37 trial calibrations were developed the constituent by performing mathematical
pretreatments on the raw spectra by smoothing over 5, 11, 21, or 41 wavelength
points. This was followed by transformation of the spectra to the first or second
derivative using derivative gaps of 5, 11, 21, or 41 wavelength points. The best
calibration for the constituent was selected based on the highest coefficient of
determination (r2) between the laboratory-measured values of the constituent
and the NIRS predicted values for the constituent, the lowest standard error of
prediction (SEP), and the highest RPD. The RPD value is the ratio of the SD of the
constituent values in the validation set to SEP. In soil and environmental analysis,
values of RPD >3 are considered successful (108) or excellent (114) calibrations.

Using the best calibration, 2,4-D distribution constants were predicted (2,4-D
NIRS-Kd values) for all samples in the validation set. Results (Table 4) indicate
that NIRS is an excellent tool to determine 2,4-D Kd values. An added benefit is
the non-destruction of samples and the rapid nature of the NIRS analysis, leading
to quick throughput for many samples used to characterize spatial and regional
variability.

Subsequently, the predicted NIRS-Kd were used as input parameters in
PRZM3 to calculate the herbicide mass leached (kg/ha) in the 103 soil horizons
from the validation set. Lab-Kd measured by conventional batch equilibrium
techniques were also used as input parameters in PRZM3 to calculate the
herbicide mass leached (kg/ha) in the same soil horizons. As shown in Table
5, the correlation coefficient (r) between Lab-Lm (herbicide mass calculated by
PRZM3 using Lab-Kd) and NIRS-Lm (herbicide mass calculated by PRZM3
using NIRS-Kd) was strong. The regression equation shows how NIRS-Lm can
be used to calculate the herbicide mass leached that would have been predicted
when using the conventional batch equilibrium procedure and PRZM3 (Table
5). As such, better quantification of pesticide sorption variability through NIRS
may provide greater confidence in pesticide fate modelling by improving on the
assessment of pesticide leaching potential in soil-landscapes.
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Table 4. Accuracy of Prediction and Mathematical Treatment for the
Prediction of the 2,4-D distribution coefficient (Kd) by near-infrared

spectroscopy (NIRS). r2, SEP, bias and RPD Values Are for Data Derived
from Evaluation of the Validation Sample Set.a

n r2 SEP bias RPD math treatment

103 0.90 0.47 0.03 3.17 s13d13
an = number of samples in the validation set; r2 = coefficient of determination; SEP =
standard error of prediction; bias = difference between mean of the NIRS-predicted data
(2,4-D NIRS-Kd values) and the reference data (2,4-D lab-Kd values); RPD = ratio of
standard deviation of values in the validation set to SEP; for mathematical treatment,
the segment = number of wavelength points over which the spectra were smoothed and
designated as “s”; gap = number of wavelength points over which the derivative was
calculated, in this case “d” for the first derivative.

Table 5. Correlation and Relationship between Lab-Lm (Herbicide Mass
Calculated by PRZM3 Using Lab-Kd) and NIRS-Lm (Herbicide Mass

Calculated by PRZM3 Using NIRS-Kd) for Data Derived from Evaluation of
the Validation Sample Seta

n r Regression equation RMSE p-value

103 0.89 Lab-Lm=8.33×10-3 + 9.02×10-1(NIRS- Lm) 5.78×10-4 <0.001
an = number of samples in the validation set; r = correlation coefficient; RMSE = root mean
square error of regression.

Concluding Remarks

Pesticide sorption parameters have been determined using batch equilibrium
procedures in numerous studies for the past 75 years, although few studies have
allowed for detailed descriptions of the spatial variations of sorption parameters at
field and regional scales. However, it is now well understood that such variations
are caused by differences in soil properties resulting from natural processes of soil
formation as well as human impacts such as cultivation. Pesticide use can only be
sustainable when agricultural management practices are designed to minimize the
potential off-site transport of pesticides from its application area into the broader
environment where, depending on estimated environmental concentrations and
toxicological profiles, may pose a risk to ecological systems and drinking water
resources.

Many governments are attempting to improve how agricultural pesticides are
used. These attempts are often founded on decisions based on the outcome of
pesticide fate models under assumed worst case conditions. Useful assessments
aimed to understand pesticide off-target movement should be conducted to test
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hypothetical as well as realistic scenarios of pesticide transport using measured
sorption variability data under defined farm management and climatic conditions.

Sorption parameters are among the most sensitive input parameters in
pesticide fate models. Therefore, the usefulness of these models will depend
on the accuracy of the sorption parameter data. As a result, the difficulty of
accurately describing the variability of sorption input parameters at the field and
regional scales poses an enormous challenge when developing government policy
and program recommendations concerning optimal pesticide use to safeguard
both agricultural productivity and the environment. As outlined in this chapter,
NIRS extends conventional analytical capacity with a method that is rapid and
non-destructive to determine the Kd values in numerous samples collected in a
field for integration into pesticide fate modeling.
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Chapter 15

Implementation of Sorption Kinetics Coupled
with Differential Degradation in the Soil Pore

Water System for FOCUS-PRZM

Wenlin Chen,*,1Mark Cheplick,2Gerald Reinken,3 and Russell Jones4

1Syngenta Crop Protection, LLC, Greensboro, North Carolina 27409, U.S.A.
2Waterborne Environmental, Inc., Leesburg, Virginia 20175, U.S.A.

3Bayer CropScience, Monheim 6690, Germany
4Bayer CropScience, Research Triangle Park, North Carolina 27709, U.S.A.

*E-mail: wenlin.chen@syngenta.com.

This chapter describes the development of the coupled sorption
and degradation kinetics in the soil-water system and the
implementation of the kinetics into FOCUS-PRZM (Pesticide
Root Zone Model), which is used in European pesticide
registrations for assessing the leaching potential under proposed
use conditions (1, 2). New codes of the kinetics were verified by
the analytical solution (assuming linear sorption isotherm) and
a well-established model LEACHP. Several field measured data
sets were used to evaluate the new version of FOCUS-PRZM.
Results demonstrate that the new version was able to reasonably
predict the soil residue levels for many orders of magnitude
over the entire time scale of field experiments. Parameters of
the sorption kinetics can be converted to the ones adapted in
FOCUS-PEARL, one of the other EU regulatory models for
pesticide groundwater exposure assessment. Model simulations
showed high sensitivity of sorption kinetics to the predicted
groundwater concentrations in all nine EU groundwater
scenarios.
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Introduction

Time-dependent sorption of pesticides and other anthropogenic organic
compounds by soil solid constituents is a widely observed environmental fate
process. There is a large amount of research that has been published and extensive
literature reviews are available (3–5). The kinetic behavior commonly exhibits
a pattern of fast initial adsorption (or release in desorption experiments) of
molecules in the aqueous phase by soil particles (appears within minutes to hours
or “instantaneously”) followed by a much slower process lasting for days to
months. This two-step process is widely described mathematically by a two-site
sorption model, which assumes two soil fractions (sites) coexisting in a soil
representative elementary volume, with one adsorbing chemicals instantaneously
and the other time-dependently (6–11).

The kinetic nature of sorption has shown rate-limiting effects on
biodegradation due to reduced bio-availability of the adsorbed chemicals to
microorganisms which perform metabolism primarily in soil pore water (12,
13). Mathematical models with variable mechanistic specifications have been
proposed to describe the interrelated processes of sorption and biodegradation
(8, 14–17). These coupled sorption and degradation kinetics with certain
variations in parameter definition have been used in several environmental fate
and transport models (e.g., LEACHP, RZWQM, PEARL, and MACRO) for
regulatory assessment and management purposes (18–21).

FOCUS-PRZM and FOCUS-PELMO are two of the four leaching computer
models officially used within the EU for pesticide registration evaluations (1).
The core modules of FOCUS-PRZM and PELMO (i.e. water flow and solute fate
and transport) are based on the Pesticide Root Zone Model (PRZM), with the
sorption module assumed as a simple equilibrium partition process described by
the Freundlich equation between the aqueous and solid phases in the soil-water
system (22). Sorption kinetics, however, were implemented in the other two
EU models, PEARL and MACRO. In order to harmonize the environmental
fate processes among the EU regulatory models, there is a desire to develop
a time-dependent sorption algorithm in FOCUS-PRZM and PELMO so that
higher tier assessment can be conducted on the same scientific basis with refined
parameterization. Since the same algorithms are applicable to FOCUS-PELMO,
only FOCUS-PRZM is mentioned in the following sections of this chapter.

The objective of this chapter is to document the development of the sorption
kinetics in FOCUS-PRZM and to evaluate performance of the new module by
comparing model-predicted results with measured soil residue data obtained from
two terrestrial field dissipation studies, one conducted in California, U.S.A. and
the other in Guiseniers, France. Solutions to the coupled sorption and degradation
kinetics have been proposed by several authors (8, 16). However, these solutions
do not distinguish degradation rates in soil pore water, and/or on different sorbed
sites (labile or more tightly bound). We thus present here a “generalized” form
of the coupled sorption and degradation kinetics with an analytical solution that
can be reduced to the same equations used in other regulatory models such as
LEACHP and PEARL. This analytical solution is then implemented in FOCUS-
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PRZM to achieve numerical accuracy for the daily time-step used in the numerical
schemes of the water flow and solute transport modules. The codes are verified
by comparing the FOCUS-PRZM simulation results to the results obtained by the
established LEACHP model.

Materials and Methods

Theory

Coupled Sorption and Degradation Kinetics

A common mathematical model for sorption and the interrelated
biodegradation kinetics is the two-site/two-region model (6–9, 16, 17), which
separates soil sorption into two types of sites (or regions), with one site type
reaching sorption equilibrium instantaneously and the other time-dependently.
The basis for this simplification is the common two-stage pattern exhibited in
experimental data where initial sorption proceeds faster at time scales ranging
from minutes to hours and then continues in a much slower phase for days to
months (11). The initial sorption can be simplified as an instantaneous step on the
soil fraction where sorption equilibrium is attained quickly. This simplification
is justifiable considering the generally slow leaching process in soil. Sorption
continues on the other soil fraction at a slower rate. A schematic representation
of the kinetics model is provided in Figure 1.

Figure 1. Schematic representation of the two-site sorption and degradation
kinetic model in the soil-water system.
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Considering different degradation rates on the equilibrium and time-
dependent fractions and in the soil pore water, the system of differential equations
of the kinetic model can be expressed as below:

Where
C Concentration in the dissolved phase; μg/L.
S1 Concentration in the instantaneous (equilibrium) adsorbed

phase, μg/g.
S2 Concentration in the kinetic adsorbed phase, μg/g. Total

sorption S = S1+ S2.
Kd Total partition coefficient when sorption equilibrium is

achieved at both sorption sites, mL/g. Thus, by definition:
Kd = (S1+ S2)/C = Kd1+ Kd2 , where Kd1and Kd2 are
individual partition coefficients at both types of sorption
sites, respectively.

f Soil fraction of the instantaneous adsorbed phase,
dimensionless. By definition, f = S1/( S1+ S2) when sorption
equilibrium is reached, or f = Kd1/ Kd.

α First-order desorption rate constant (or mass transfer
coefficient) in the kinetic adsorbed phase, day-1; (note it can
be shown that α= kads/Kd, kads is first-order adsorption rate
constant in the kinetic adsorbed phase, day-1.

μs1 Degradation rate constant on the equilibrium adsorption site,
day-1.

μs2 Degradation rate constant on the kinetics adsorption site, day-
1

μw Degradation rate constant in the soil pore water or liquid
phase, day-1.

θ Soil moisture content, cm3/cm3.
ρ Soil bulk density, g/cm3.
t Time, day.

With the initial conditions: C(0) = C0, S1(0) = fKdC0, and S2(0) = S0, Eqs. 1-3
can be solved analytically assuming sorption is linearly related to concentration in
soil pore water when complete equilibrium is achieved (i.e. 1/n=1 and Kd = Kf in
the general Freundlich equation S=Kf C1/n). The analytical solutions are provided
in Eqs. 4-7 below with the dummy variables defined in Eqs.8-15.
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And

Eq. 7 is for the total concentration both in the adsorbed phase and in the soil
pore water. The dummy parameters in Eqs. 4 to 6 are defined below.

Note that the analytical solutions have a mathematical singularity at α = 0,
and μw = μs1 = μs2 as the two macro rate constants be equal (i.e., λ1 = λ2). As
a result, setting α= 0 should not be allowed in the PRZM codes in case of no
sorption kinetics and no differential degradation between soil pore water and the
two sorbed phases. These constraints should be taken into account when fitting the
model to data. In addition to the overall equilibrium sorption partition coefficient
Kd (or equivalently, the soil organic carbon-normalized partition coefficient Koc),
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five new parameters are introduced in the coupled kinetics: the fraction of the soil
equilibrium sorption (f); desorption rate constant (α), degradation rate constant in
soil pore water (μw); degradation rate constants on the equilibrium sorption phase
(μs1) and the kinetic sorption domain (μs2).

Implementation in FOCUS-PRZM

Solute transport in the soil porous media is described by the Convection-
Dispersion Equation (CDE) (22). For simplicity, the terms of fate and transport
in gaseous phase and via runoff/erosion and other processes are not duplicated
here in the equations below but will be added in the PRZM codes. The CDE after
incorporating the two-site sorption kinetics (Eqs. 1-3) is expressed as:

Where D is solute diffusion-dispersion coefficient, cm/day2; z is distance
in soil profile, cm; V is soil pore water velocity, cm/day. Other variables and
coefficients are defined in Eqs. 1-3.

The CDE with the kinetic sorption term would require adjustment in the
coefficients of the tridiagonal matrix. Following the backward difference in
PRZM (22), Eq. 16 can be discretized in both time and space using the numerical
scheme:

Where the superscript j represents the current status at time t and j-1 represents
the previous time step at time t-Δt; similarly the subscript i denotes space of soil
compartment i.

Writing each concentration term for time step j and substituting Eqs. 17-20
into Eq. 16 leads to a system of algebra equations for soil compartment i (i≠1 and
n, the upper and lower boundary compartments):

Where
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Sorption on the kinetic site (Eq. 25) is updated before the solution of
the CDE. Since the rate of degradation (liquid and/or solid phases) and the mass
transfer process (α) can be relatively large within the daily time-step adopted by
PRZM, an integration of these coupled terms over the time step is necessary. This
is done by using the analytical solution of the coupled sorption and degradation

kinetics (Eq. 6). Specifically, at the beginning of each day, is estimated via Eq.
6 with previous day’s values as initial conditions for each soil compartment, the
CDE is then subsequently solved (Figure 2). Note that when S2 = 0, and f=1 (no
kinetic sorption), the above equations reduce to the original version of the PRZM
fate model.

Figure 2. Diagram of the numerical scheme within a daily time-step implemented
on FOCUS-PRZM. Symbols in equation: C is concentration in soil pore water
(μg/L); subscript indicates soil profile compartment number; superscript

indicates time, day; Ai, Bi, Ei, and Fi are coefficients of the tri-diagonal equations
of the solute transport convection-dispersion model, S2 is the sorbed mass on the

kinetic site, μg/g; and Δt is time-step (1 day).
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For non-linear sorption (i.e., the exponent 1/n of the Freundlich equation is
not 1), a new Kd is adjusted each day by the equation:

Where Kf is the Freundlich sorption coefficient. Other variables are defined
previously. Note that the Kd for the Freundlich type sorption is a function of C
in Eq. 26. As such, potential improvement for estimating the mass distribution
coefficient between C and S may be expected via iterative loops in the numerical
solution. This iterative refinement, however, is not currently adapted to maintain
reasonable model execution speed.

Relationship between FOCUS-PRZM and PEARL Parameters

Sorption kinetics in the FOCUS PEARL model is adapted slightly differently
in compartment definition and its associated mathematical formulations (Figure
3). It is a two-site sorption kinetics model assuming no degradation on the
non-equilibrium sorption (NES) domain. Degradation in the soil pore water and
equilibrium sorption domain is the same with a uniform decay rate constant (kt).
Both equilibrium (eq) and non-equilibrium (neq) compartments are described by
the Freundlich isotherm with individual distribution coefficients Kf_eq and Kf_neq.

Figure 3. Diagram of the sorption kinetics formulated in FOCUS PEARL.

Comparing to the sorption kinetics defined in FOCUS-PRZM model, the
difference is that PEARL defines the fraction of the NES domain (fne) as the ratio:
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Regardless whether the Freundlich isotherm is linear or not, it can be shown
that

Similarly, it can be shown that the desorption rate coefficient denoted as kd in
PEARL is equivalent to α in FOCUS-PRZM. Rewriting Eq. 3 of the kinetics for
the NES site assuming Freundlich sorption isotherm and no degradation gives:

Using Eq. 28 and recognizing Kd = Kf_eq + Kf_neq by definition, Eq. 29 can be
written:

Eq. 30 is the same as Eq. 4.2 in PEARL (20) when setting the reference
concentration to unity and using the same symbols for other variables (e.g., C=Cw,
S1=Cs eq, and S2=Cs neq per Figure 3).

As discussed above, assuming no degradation on the NES domain (i.e. μs2=0)
and a uniform degradation rate constant for the soil pore water and the equilibrium
sorbed phase (i.e. μw =μs1), the effective degradation DT50eq can be approximated
from the total soil system DT50tot using the following equation:

where variables are defined previously. Note that Eq. 31 is not an accurate
relationship but an approximation based on several assumptions (e.g. linear
sorption isotherm, a slow degradation rate coefficient compared to sorption rate
constant α and a small fne). Boesten and van der Linden have published a similar
but more complex approximation equation (2, 23).

Field Data

U.S. Data

Soil residue data of a sulfonylurea herbicide from a US EPA guideline
terrestrial field dissipation study was used to calibrate the model for the required
kinetic parameters. The study was conducted in a loamy sand soil in Madera, CA,
USA, from June, 1999 to January, 2001. Soil characteristics are listed in Table
1. The study consisted of two treated plots (bare soil and cotton cropped, each

283

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



measured 41 m by 14 m) and a control (41 m by 5 m). Each of the treated plots
was further divided into three replicate subplots. Three applications at 60 g a.i./ha
were broadcast to the two treated plots on June 25, July 9, and July 23, 1999.
The cotton was approximately 8 to 13 cm tall when the first application occurred.
Daily weather data (air temperature, rainfall, wind speed etc.) and sprinkler
irrigation amount were recorded on site. The cumulative total water input (sum of
rainfall and irrigation; cm) and average daily temperature were plotted in Figure
4a for the course of the terrestrial field dissipation study.

Table 1. Soil Chemical-Physical Properties at the Terrestrial Field
Dissipation Site, Madera, California, U.S.A.

Soil Depth
(cm)

USDA
Soil

Texture

BD
(g/cm3)

Moisture
Content at 33
kPa (cm3/cm3)

OM
(%)

Soil
pH
(H2O)

CEC
(meq./100g)

0 – 15 LS 1.49 11.2 1.3 6.7 7.8

15 – 30 LS 1.58 10.5 0.8 7.4 6.3

30 − 45 LS 1.60 8.9 0.6 7.6 5.7

45 − 60 LS 1.60 10.6 0.5 7.8 6.4

NOTE: LS=Loamy Sand. BD=Bulk density; OM=Organic Matter Content. CEC=Cation
Exchange Capacity. Bulk density and 33 kPa moisture content were measured on
undisturbed soil cores taken from the field plots.

Soil sampleswere taken to a depth of 120 cmbelow ground in 15 cm increment
from the treated and control plots before each chemical application, 7 days after the
first and second applications, and then at 1, 3, 7, 14, 21, 28, 61, 91, 119, 182, 271,
357, 451, and 536 days following the third application. Five soil core samples were
collected, combined, and thoroughly mixed to create a composite sample for each
depth and replicate of the treated plots. The composite soil samples were extracted
with 70% methanol/water (v/v) one time and 70% methanol/water (v/v) with 2%
ammonium hydroxide two times at room temperature for 30 minutes each. The
combined extracts were analyzed for determining the total residue concentrations
of the test compound using high performance liquid chromatography (HPLC). The
limit of quantification (LOQ) was 0.5 ppb (or μg/Kg).

The calibrated model was then applied to a second data set consisting of field
soil samples taken from 17 field locations in ten states (AR, CA, FL, MS, NC, PA,
OH, SC, TN, and TX) between 1998 and 2002. Unlike the EPAguideline terrestrial
field dissipation study, these were general biological field trials and in most cases
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there were only 2 to 3 soil samples taken during the entire trial. Site-specific
soil properties were characterized for the surface layer 0-15 cm. Daily weather
data were obtained from the nearby weather stations of the National Oceanic and
Atmospheric Administration (NOAA). Application rate varied from 6.4 to 60 g/ha
mostly with a single application (only two trials had 3 applications) betweenMarch
and July. All samples were cored from the 0-15 cm soil layer. The limit of
detection (LOD, 0.01 ppb) was used for the laboratory analytical method.

Figure 4. Water inputs and temperature at the two terrestrial field dissipation
study sites used for evaluating FOCUS-PRZM.
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EU Data

The third field data set used for model comparison was obtained from a field
dissipation study conducted with a neonicotinoid in northern France (F-27700
Guiseniers, Haute-Normandie, Eure) from April, 1998 to May, 2000. This study
was one of the six European trials and is used as example for model evaluation
in this chapter. The soil was a silty loam with detailed characteristics listed on
Table 2. The mean annual rainfall during the experimental period totaled 954
mm with mean annual temperature of 11.0 °C. Daily rainfall and monthly average
air temperature were presented in Figure 4b. The test substance was sprayed to
bare soil at an application rate 150 g a.i./ha on the 27th of May 1998. The trial
was cropped with spring wheat sown shortly before application. In the autumn
after spring wheat harvest, grass was sown and then cut several times when the
grass reached a height of approximately 10 cm. Soil samples were taken at eleven
intervals following the day of treatment (DAT 15, 28, 56, 91, 135, 199, 270, 360,
480, 599, 729). At each sampling time point 20 soil core samples were collected,
combined, and thoroughly mixed to create a composite sample for each depth and
replicate of the treated plots. On DAT 0, samples were taken using the "Piercer"
(diameter of 5 cm) to a depth of 10 cm. On the other sampling dates, a pushing
sampling system ("Wacker Hammer", diameter of 4.8 -5 cm) was used to take soil
cores down to a depth of 50 cm.

Table 2. Soil Chemical-Physical Properties at the Terrestrial Field
Dissipation Site, Guiseniers, France

Soil Depth
(cm)

USDA
Soil

Texture

MWHC
(cm3/cm3)

OM
(%)

Soil pH
(CaCl2)

CEC
(meq./100g)

0 – 30 SL 44.4 1.9 5.2 13

30 − 50 SL 49.3 0.9 6.2 10

NOTE: SL=Silty Loam. MWHC=Maximum Water Holding Capacity. OM=Organic
Matter Content. CEC=Cation Exchange Capacity.

Model parameters of the sorption kinetics were independently determined for
two soils (silt loam and sandy loam) in the laboratory. An aged sorption protocol
was used where the test compound was incubated with soil for 0, 2, 7, 14, 27, 55
and 99 days under constant soil moisture at 40% of the maximum water holding
capacity and temperature of 20 °C. After aging of the soil, 200 ml of 0.01 M
aqueous CaCl2 solution was added and equilibrium was established after shaking
for 24 hours at 20 °C. After centrifugation, the supernatant (desorption solution)
was removed and analyzed. The residual soil was extracted once with 80 ml
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methanol and then three times with 80 ml acetonitrile. For each extraction cycle,
the soil was shaken for 30 min and centrifuged. The extracts were combined
for analysis (cold organic extract). After cold organic extraction, the moist soil
residue was hot-extracted under reflux with acetonitrile/water (50:50) for 2 hours
and centrifuged (hot organic extract).

For the model evaluation, both organic extracts (cold and hot) were taken
to determine the amount of the non-equilibrium fraction (S2) (Figure 5). The
total mass extracted by the aqueous CaCl2 solution was distributed between the
dissolved soil pore water concentration (C) and the sorbed at the equilibrium
sites (S1) using the Freundlich isotherm measured separately in a batch sorption
equilibrium study. The Freundlich isotherm parameters were: Kf = 0.657 L/kg for
the silt loam (OC=0.83%); Kf = 1.133 L/kg for the sandy loam (OC = 1.02%); and
mean 1/n = 0.83. Results of the sorption parameters were obtained by fitting the
kinetics model to the measured data and provided in Figure 5 for the two soils.
Averaged values of the fitted parameters were used to evaluate the field trial.

Figure 5. Laboratory measurements and determination of sorption parameters in
two European soils: modeled (solid line) and measured (symbols) concentrations
on the equilibrium sorption sites (top) and the non-equilibrium sorption (NES)

sites (bottom). Fitted parameters were in the table below.
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Results and Discussion
Code Verification

The new codes implemented in FOCUS-PRZM were verified by comparing
the model predictions with the analytical solutions of the coupled kinetics (Eqs.
4-7) and with the results by LEACHP modeling (Figure 6). A hypothetical case
without rainfall and evapotranspiration (i.e. no water flow) was simulated with the
new codes and LEACHP. Parameters used in the synthetic case were: application
rate: 1.0 Kg a.i./ha (assuming perfect mixing in 10 cm soil after application), soil
bulk density =1.45 g/cm3, soil moisture content=0.45 cm3/cm3. The kinetic and
fate parameters are indicated on Figure 6. As shown in the model comparison, the
new codes in FOCUS-PRZMgive almost identical results as the analytical solution
and LEACHP-predicted concentrations, suggesting that the codes implemented in
the model are programed accurately.

Figure 6. Comparison of FOCUS-PRZM and LEACHP to the analytical solution
of the coupled sorption and degradation kinetics (Eqs. 4-7). (see color insert)

Comparison with Field Data from U.S.

The measured soil concentration data obtained from the CA terrestrial field
dissipation study were used to calibrate (manual tuning) the required parameters
in the new FOCUS-PRZM implemented with the NES algorithm. For comparison
purpose, the previous version of FOCUS-PRZM which assumes local equilibrium
sorption (LES) in the soil-water system was also calibrated. Results of the
modeled and measured dissipation data are provided in Figures 7a and b for the
soil depth 0-15 cm and 15-30 cm, respectively. Comparisons for other soil depths
were not made because only a few sporadic detectable concentrations near the
LOQ (0.5 ppb) were found at depths between 30 and 61 cm and no detectable
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residues below 61 cm in the soil profile. Site-specific information was used in
the model calibration, including soil, weather (rainfall, temperature, and potential
evapotranspiration), irrigation, application, and field agronomic activities.

Figure 7. Model calibration results using measured soil concentrations from
a terrestrial field dissipation study on a loamy sand soil, Madera, CA. Three

applications were made at 60 g ai/ha in a 14 day interval (6/25, 7/9, 7/23, 1999).
Soil core samples were taken to the depth 120 cm below ground. A few sporadic
detections around LOQ (0.5 ppb) were found in 30-60 cm and no detectable

concentration at depth below 61 cm in the study.
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For the new version of FOCUS-PRZM with NES, the calibrated fate
parameters were α=0.013 d-1, μw=0.139 d-1, μs1=μs2=0.003 d-1, Koc =100 mL/g,
and f =0.2. Parameter adjustments were initially made from a laboratory aged
sorption study with treated soil samples incubated for 85 days at 25 °C and 75%
field soil moisture holding capacity (data not shown). The field data-calibrated f
value was found to be slightly lower than the ratio (0.22) of the measured apparent
Kd (=S/C) between Day 0 and Day 85 after treatment. The measured apparent Kd
on Day 85 was found to overestimate the ultimate sorption equilibrium Kd based
on the field data. This was likely due to the effect of the concurrent degradation
in the aged sorption study. As shown in Chen et al. (24), apparent Kd generally
increases with incubation time and may eventually reach a plateau. However,
a plateaued apparent Kd does not necessarily suggest sorption equilibrium when
degradation co-occurs in the soil-water system.

For the previous version of FOCUS-PRZMwith LES, a Koc value (=78 mL/g)
and a bulk soil degradation half-life of 7.1 days (i.e., both in pore water and on
the sorbed phases) were found to best fit the observed data in the beginning 60
days after the first application but noticeably underestimate the later observations
(dash line in Figure 7a). A longer half-life value could fit the later decline data
better but would grossly over-predict the earlier peak concentrations (results not
shown). TheKoc (=78 mL/g) was directly taken from the median value determined
from a laboratory batch equilibrium sorption study. This value was not further
adjusted as it paired reasonably well with the half-life (7.1 days) to predict the
peak residue concentrations in the topsoil layer (Figure 7a). Although noticeable
over-prediction was observed in the subsoil layer (Figure 7b), suggesting the need
of increasing Koc (i.e., reducing mobility), an increase in Koc would result in over-
prediction of the topsoil residue levels. This mutual constraint of data fitting is
indicative of lacking flexibility in the LESmodel to better predict fate and transport
at various spatial and temporal scales.

The new FOCUS-PRZM (solid line in Figures 7a and b) clearly outperformed
its previous version in predicting both the peak and the aged soil residue levels
over the full time scale despite some underestimation at the end of the field
study. The observed dissipation in the topsoil showed a bi-phasic pattern
where initial decline was fast and then followed by lingering low soil residue
concentrations. While predictions for the subsoil deserved more improvement,
the overall better fit by the new NES model appeared to support the hypothesis
that compounds were more bioavailable to degradation shortly after application.
In this case, 20% sorption (i.e., f =0.2) was instantaneous, thus leaving 80%
sorption being time-dependent. Molecules not instantaneously sorbed would
be highly bioavailable for rapid degradation in the soil pore water (μw=0.139
d-1). In a later stage, chemical bioavailability decreased as residues became
sorbed and subsequent desorption was slow (α=0.013 d-1), thus limiting the
rate of degradation in the soil pore water. These interrelated, simultaneously
operating, and time-dependent processes (i.e., adsorption, desorption, and
degradation) were simulated reasonably well by the new NES codes implemented
in FOCUS-PRZM. In comparison, the previous version of the model assuming
full local sorption equilibrium with a Koc (78 mL/g) not much different from
the new NES model-calibrated Koc (100 mL/g), failed to predict the prolonged

290

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



dissipation pattern due to its lacking mechanism to account for the rate-limiting
effect of time-dependent sorption on degradation.

Figure 8. Comparison of model independent predictions with measured soil
samples taken from 17 field locations in nine states (AR, CA, FL, MS, NC, PA,
OH, SC, TN, and TX) between 1998 and 2002. Application rate varied from 6.4

to 60 g/ha. All samples were cored from the 0-15 cm soil layer.
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The calibrated new FOCUS-PRZM was independently evaluated against a
set of field collected soil residue data from 17 geographical locations in 10 states
(Figures 8a and b). The independent evaluation means that the model was used
to predict the 17 data sets independent of the CA field dissipation study with
which the kinetic fate parameter values were calibrated from. Recognizing the
potential soil-dependency of kinetic fate parameters, we focused on the model
predictability for the overall trend measured from the 17 sites. For this purpose,
site-specific data-model comparisons were not plotted. Instead, all measured
residue soil concentration data were first organized and plotted by days after the
first application at each site (Figure 8a). In this plot, scatter in the measured data
points on a given day would represent the differences in geographical conditions,
application rates, and the potential variability in the environmental fate processes
(i.e., sorption and degradation). Two observations can be made from this general
comparison. First, it is interesting that the overall dissipation pattern of the
combined data sets appeared bi-phasic albeit high variability. Second, although
the model assumes no variability in the kinetics fate parameters, the predicted
magnitudes were in the same range of the data scatter, indicating dominant
geographical variability predicted by the model.

The measured soil residue concentrations are compared with the
corresponding modeled results on a site-specific basis in Figure 8b. As shown,
the model was able to predict the 238 measured soil residue data points with
R2=0.62. Clearly, scatter in the collected data sets was large and was reflective
of the variability in the wide geography and different environmental conditions
under which these measurements were made. The model responded reasonably
well to the inherent field location variability as well as the range of almost 5
orders of magnitude in the measured concentrations. It is expected that the
model-data scatter could be reduced if site-specific environmental fate parameters
were known and used for model predictions.

Comparison with EU Data

Data from a field dissipation study at Guiseniers, France, was used to
further evaluate the kinetic sorption model as implemented in FOCUS-PRZM
under European conditions. Model parameters of the sorption kinetics were
independently measured in the laboratory for two soils and the mean values of
these parameters were used (Figure 5). These include the three kinetic sorption
parameters characterizing the sorption capacity (f and Kd) and the desorption
rate constant (α) for the NES domain. Assuming no degradation on the NES
domain (i.e. μs2=0), the degradation rate constant in the soil pore water and on
the equilibrium sorbed phase (i.e. assuming μw =μs1) was determined by fitting
the time- and depth-dependent field residue data. The fitted DT50 value is termed
effective degradation DT50eq as it takes into account only the soil water and the
equilibrium sorption phase. It can be shown that DT50eq is systematically smaller
than the total system DT50tot (see Eq. 31 below) for the bulk soil.
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Figure 9. Model comparisons to field soil residue data of a neonicotinoid
obtained from a terrestrial field dissipation study conducted at Guiseniers,
France after bare soil spray application of 150 g ai/ha during spring 1998.

Examples of predicted concentration distributions in soil profiles on Day 135 (a)
and Day 729 (b) after application, respectively. Model simulations were made
with two options: with kinetic sorption parameterized using aged sorption data
from laboratory experiments, and with “standard” asumptions (i.e., no kinetic

sorption).

Measured and modeled concentration distributions in the soil profile on
Day 135 and Day 729 after application were compared in Figures 9a and b,
respectively. FOCUS-PRZM with the NES kinetics predicted the measured
residue mass much closer than the model without sorption kinetics (indicated as
“Simulated standard” on the figure) even though the downward transport was still
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over-predicted and the top soil residue under-predicted by the NES model. One
of the reasons could be the tipping bucket water transport mechanism adopted
in FOCUS-PRZM which does not allow upward movement of either water or
solutes as it does occur in reality due to surface evapotranspiration. Similar to
the US study results, FOCUS-PRZM without NES kinetics more pronouncedly
over-predicted leaching while under-predicted the residue levels on the surface
soil layer (Figs 9a and b). Such discrepancy became more obvious as time elapsed
from Day 135 to Day 729. This effect of sorption kinetics on predicted drain flow
concentrations was further illustrated in Figure 10, where a standard FOCUSSW
drainage scenario was simulated by the MACRO model with the kinetic sorption
parameters above. Consistent with the predicted soil residue patterns in the
field dissipation study by FOCUS-PRZM, higher and earlier concentration
“breakthrough” was predicted when sorption kinetics was not considered in the
MACRO model (blue color).

Figure 10. Effects of kinetic sorption on predicted drain flow concentrations in
a standard FOCUS drainage scenario simulated by the MACRO model (using

input parameters as in Figure 9). (see color insert)

Example Simulations for the Nine FOCUS Scenarios

A simulation series was conducted with three variations of the FOCUS
example pesticide (or Pesticide D, with Kom=35 L/kg, Freundlich exponent
1/n=0.9) for the nine FOCUS groundwater scenarios (Figure 11). An annual
application in winter cereals (1 Kg/ha one day before crop emergence, CAM = 1,
Q10= 2.58, no runoff) was assumed. The following variations were considered
with respect to the sorption kinetics:
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A. Without kinetic sorption;
B. Default kinetic sorption (PEARL: fne = 0.3, α = 0.01 d-1);
C. Extreme kinetic sorption (PEARL: fne = 0.5, α = 0.5 d-1).

The effective degradation DT50eq of the equilibrium sorption phase (which is
always smaller than DT50tot of the total bulk soil) was calculated based on Eq.
31 using the standard soil DT50tot (i.e. 20 days for FOCUS Pesticide D) and
the applicable kinetic sorption parameter. The following effective DT50 values
corresponding to the three sets of different sorption kinetics above were calculated
as model inputs for degradation:

Figure 11. Comparison of FOCUS-PRZM simulated annual average
concentrations (80th percentile) for three different kinetic sorption cases at the
nine FOCUS groundwater scenario locations: C=Châteaudun; H=Hamburg;
J=Jokioinen; K=Kremsmünster; O=Okehampton; P=Piacenza; N=Porto;

S=Sevilla; T=Thiva. (see color insert)

The simulation results of the three different sorption kinetics assumptions for
the nine FOCUS groundwater scenarios are provided in Figure 11. As shown, the
sensitivity of the annual concentrations to kinetic sorption is clearly demonstrated
for all nine scenarios. Kinetic sorption tended to reduce the mobility of the
test compound in these cases and had a significant effect on simulated leaching
concentrations.
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Conclusions
This chapter described the development of the coupled sorption and

degradation kinetics in the soil-water system and the implementation of the
kinetics into FOCUS-PRZM. New codes of the kinetics were verified by the
analytical solution (assuming linear sorption isotherm) and a well-established
model LEACHP. Several field measured data sets were used to evaluate the new
version of FOCUS-PRZM. Results demonstrated that the new model was able to
reasonably predict the soil residue levels in many orders of magnitude over the
entire time scale of field experiments. Parameters of the sorption kinetics can be
converted to the ones adapted in FOCUS PEARL, one of the other EU regulatory
models for pesticide groundwater exposure assessment. Model simulations
showed high model sensitivity of sorption kinetics to predicted groundwater
concentrations in all nine EU groundwater scenarios.
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Chapter 16

Effect of Refined Environmental Fate
Properties on Groundwater Concentrations

Calculated With PRZM

Robin Sur,* Jane Tang, Russell L. Jones, Daniel G. Dyer,
and Peter N. Coody

Bayer CropScience LP, 2 TW Alexander Drive, Research Triangle Park,
North Carolina 27709, United States

*E-mail: robin.sur@bayer.com.

Non-linear sorption and time-dependent sorption (TDS) are
common compound properties that allow for a more realistic
description of the transport and degradation of agrochemicals
in the vadose zone of the soil. The EU groundwater model
FOCUS-PRZM 3.5.2 includes these soil processes following
intensive evaluation and technical dialog among European
stakeholders (regulatory authorities, academia, consultants, and
industry). This approach is used in the EU regulatory process
and therefore, laboratory data needed to describe the enhanced
binding processes are often available. The PRZM-GW model
(by US-EPA) considers only linear sorption. Non-linear and
time-dependent sorption can be included in FOCUS-PRZM
3.5.2 with the EPA environmental scenarios to demonstrate
the effect on the predicted groundwater concentrations. In
many cases significant reductions in the predicted groundwater
concentrations can be obtained. In this study the existence
and extent of time-dependent sorption has additionally been
confirmed in the field by evaluating the solute downward
movement in two long-term field accumulation studies. These
studies were conducted over 6 to 8 years, a time period much
longer than used for laboratory studies. The TDS effect was
at least as pronounced as measured in the laboratory. The
results suggest that incorporation of Freundlich sorption and
time-dependent sorption into the exposure assessments for plant

© 2014 American Chemical Society

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



protection products would result in more realistic estimates
of groundwater concentrations. Often the necessary studies
to derive reliable Freundlich and TDS sorption parameter are
available. It is therefore recommended to consider this approach
in drinking water exposure assessments for North America.

Introduction
US-EPA has released the numerical leaching model PRZM-GW in December

2012 to estimate concentrations of pesticides in drinking water (1) as a supplement
to the long-standing screening level model SCI-GROW (2). Main reasons have
been to evaluate concentrations in groundwater based on repetitive multiple
year applications of pesticides and to assess the effect of different agronomic
practices and use restrictions on the outcome, e.g. applications only every other
year. SCI-GROW contains a regression equation, based on the evaluation of
prospective groundwater monitoring studies of ten compounds at twelve sites
vulnerable to leaching, and thus providing a conservative estimate of the expected
groundwater concentration representing the upper 95% to 99% confidence
interval of monitoring results. PRZM-GW, however, is based on PRZM 3.12.2,
i.e. a one-dimensional finite difference numerical model to predict water and
solute movement in the root zone of the soil (3). Hydrology is estimated by
the field capacity or ‘tipping-bucket’ model, i.e. water in a soil compartment
exceeding field capacity drains into the next lower compartment within one day
(4). Solute transport is described by the Convection-Dispersion Equation. EPA
has developed six environmental standard scenarios at the Tier-1 level to be used
with PRZM-GW that represent vulnerable soil and climatic conditions at sites
on the US east coast and in the upper Midwest. In some cases the PRZM-GW
derived groundwater concentrations are up to orders of magnitude higher than the
corresponding SCI-GROW results that are based on measurements of real-world
concentrations. This is partly due to the very conservative standard environmental
fate input parameters used on Tier-1. The present paper deals with refinement
options based on non-linear (Freundlich) and time-dependent (non-equilibrium)
sorption to obtain a more realistic groundwater exposure assessment. Generally,
compound sorption is higher at lower concentrations due to the Freundlich effect
and with longer residence time in soil due to time-dependent sorption. These
sorption processes are established environmental fate properties of pesticides and
their metabolites in soil and have been described in numerous studies for many
different compounds (5).

Material and Methods
Test Compound

The test compound under investigation was a pesticide named BCS-01 for
the purpose of anonymity. The methods applied to derive the environmental
fate characteristics relevant for leaching modeling are described in the following
sections.
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Laboratory Batch Adsorption Study

The laboratory batch equilibrium adsorption experiments were conducted in
accordance with guidelines from OECD (6), US-EPA (7), Canadian PMRA (8),
and Japanese MAFF (9).

The equilibrium adsorption of BCS-01 was measured on five different soils
with initial concentrations of BCS-01 at about 1, 0.3, 0.1, 0.03, and 0.01 mg/L in
0.01 molar aqueous calcium chloride solutions with a soil/solution ratio of 1 to 4.
Adsorption took place in the dark at 20°C by shaking for 48 hours. Afterwards, the
aqueous supernatant was separated by centrifugation and the a.i. residues in the
supernatant were analyzed by liquid scintillation counting (LSC). After a further
desorption step with 0.01 molar aqueous calcium chloride solutions, the soil was
extracted with acetonitrile at ambient conditions and analyzed by LSC.

Adsorption parameters were calculated using the Freundlich adsorption
isotherm. The Freundlich sorption coefficients and exponents were derived
from linearized isotherms with equilibrium concentrations over two orders of
magnitude from 600 µg/L to 2 µg/L, which covered the expected range of
drinking water concentrations. To illustrate the effect of increased sorption at
lower concentrations the soil-water distribution coefficient (KOC,D; eq 4) was
calculated as a function of the concentration in the liquid phase cL. This was
achieved by dividing the sorbed equilibrium concentration XEQ as expressed by
the Freundlich equation (1) by the concentration in the liquid phase cL according
to the following formulae:

with

XEQ Concentration sorbed at equilibrium sites (mg/kg)
KOC,EQ Equilibrium Freundlich sorption coefficient on organic

carbon (L/kg)
KF,EQ Equilibrium Freundlich sorption coefficient (L/kg)
cL Concentration in liquid phase (mg/L)
cL,R Reference concentration in the liquid phase (1 mg/L)
1/n Freundlich exponent
mOC Mass fraction of organic carbon in soil

Distribution coefficient:
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Distribution coefficient on organic carbon:

Time-Dependent Sorption Study

Experimental Setup

Two time-dependent sorption (TDS) studies with BCS-01 were conducted
on five different soils. The purpose was to investigate changes of the
sorption parameter KD of BCS-01 due to aging in soil. In these studies the
soils were prepared and incubated in accordance with typical aerobic soil
metabolism/degradation methods, according to OECD test guideline 307 (10)
and US EPA Subdivision N, Section 162-1 (11). The specific feature of these
TDS studies was that an aqueous desorption was conducted as the first soil
extraction step according to the procedure described in the OECD guidance
on adsorption/desorption measurements (6) and in EPA Subdivision N, Section
163-1 (7). The entire soil sample was subjected to desorption using a 0.01
molar calcium chloride solution at a soil-to-solution ratio of 1:4 until equilibrium
between the concentration of BCS-01 in solution and the adsorbed portion had
been established, i.e. shaking for 24 h. Further extraction steps with organic
solvents at ambient temperature and at 70°C were additionally conducted. Eight
samples were taken between 0 d (2 h), 1 d, 2 d/3 d, 7 d, 14 d/15 d, 30 d, 58
d/62 d, and 121 d/128 d after incubation. Two individual flasks (true replicates)
per soil were analyzed at each sampling interval. For each sample, distribution
coefficients KD were calculated according to the following formulae:

where
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Symbols and Units

V Original porewater volume of soil (moist soil) (L)
VADD Added volume of desorption solution (L)
VSUP Volume of desorption solution (L) after centrifugation

(supernatant)
VINT Interstitial water (porewater), volume of water remaining in

soil after desorption and centrifugation (L)
CL,SUS Concentration of test item in desorption solution at

equilibrium (mg/L)
XEXTR Total concentration of test item sorbed at the end of the

shaking period related to soil dry weight (mg/kg)
Ms Dry mass of soil (kg)
AISUP Mass of test item in desorption solution (supernatant) (mg)
AIORG Mass of test item in organic extract (cold extraction) (mg)
AIHOT Test item in aggressive organic extract (hot extraction) (mg)

The interstitial water volume VINT is the remaining aqueous solution still
present in the soil, after adding the desorption solution volume VADD to the
original porewater volume V in the moist soil, then shaking, centrifuging and
then decanting the supernatant volume VSUP (eqs 7 and 8).

According to OECD guideline 106 (6), the amount of test item contained in
the interstitial water (needed in eq 7), is calculated by subtraction the volume
of desorption solution VSUP (supernatant after centrifugation) from the original
volume of solution employed to soil (V + VADD), multiplied by the measured
concentration of test item in the desorption solution CL,SUS.

Time-Dependent Sorption Model

The two-site TDS model described by Leistra et al. (12) was used to derive
the model parameters for BCS-01 based on the laboratory TDS study. The
conceptual model is depicted in Figure 1. The model assumes two different
kinds of sorption sites, the one for equilibrium and the other for non-equilibrium
sorption. Sorption at the equilibrium sites takes place instantaneously. This
process is operationally defined as being completed within 24 h of shaking a
soil-water suspension (13) and can therefore be measured within the OECD
guideline study 106 on adsorption/desorption measurements (6). Sorption at
the non-equilibrium sites proceeds slower and this is measured in the TDS
laboratory study. Non-equilibrium sorption is rate limited and characterized by
the so-called desorption rate constant kdes. Sorption to both types of sites follows
Freundlich isotherms assuming the same exponent 1/n but different Freundlich
coefficients. The model parameter fNE defines the ratio of Freundlich sorption
coefficients in the non-equilibrium (KF,NE) and the equilibrium compartments
(KF,EQ). Degradation is assumed to follow single first-order kinetics and only to
occur in the equilibrium compartment including equilibrium sorption sites and
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the liquid phase. This approach was extensively evaluated by industry, academia
and regulatory authorities in Europe over the past 10 years and has been used for
groundwater assessments in the European regulatory process (14, 15).

Figure 1. Two-site time-dependent sorption model. The dashed line encloses the
equilibrium compartment consisting of the liquid and the equilibrium sorption
phase. The dotted line shows the non-equilibrium soil compartment. Model

parameters are explained in the text.

Tools To Derive TDS Model Parameters

The program PEARLNEQ (13) contains the TDS model as described in
Leistra et al. (12) along with the optimization package PEST (16). It was used
to derive the TDS model parameters for BCS-01 based on the laboratory TDS
studies. Besides experimental conditions, e.g. soil dry mass and water content,
the main model inputs are total compound mass in the system Mp and compound
concentration in the liquid phase cL as a function of time. The following
assumptions and equations are part of the program. The total mass of a pesticide
in each test vessel of a TDS laboratory study is the sum over the amounts in the
liquid phase, the equilibrium sorbed and the non-equilibrium sorbed phases:

with:

Mp Total mass of pesticide in each jar (mg)
V Volume of water in soil incubated in each jar (porewater) (L)
CL Concentration in liquid phase (mg/L)
Ms Dry mass of soil incubated in each jar (kg)
XEQ Concentration sorbed at equilibrium sites (mg/kg)
XNE Concentration sorbed at non-equilibrium sites (mg/kg)
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Sorption both at the equilibrium and non-equilibrium sites is described
by Freundlich type isotherms. The Freundlich exponent 1/n from the batch
adsorption/desorption study is assumed to be equally valid for the equilibrium
and non-equilibrium domain. Both isotherms are related to each other by the
dimensionless factor fNE:

with:

cL,R Reference concentration in the liquid phase (1 mg/L)
KF,EQ Equilibrium Freundlich sorption coefficient (L/kg)
KF,NE Non-equilibrium Freundlich sorption coefficient (L/kg)
1/n Freundlich exponent

The sorption rate equation for the non-equilibrium sites is described as
follows:

Since soil degradation with the rate constant kt is assumed to occur only in the
equilibrium domain of the soil system, liquid and equilibrium sorbed compound,
the following rate law applies:

with:

The half-life of a compound in the equilibrium domain of the soil system
(DT50EQ) has to be faster by the relative size of the equilibrium domain compared
to the total soil domain (DT50TOT), i.e. the sum of equilibrium and non-equilibrium
domain (17). By this, it is assured that the overall half-life in the total system of
the soil stays the same, irrespective whether the TDS model is used or not:
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PEARLNEQ solves both differential equations (12 and 13) numerically
using Euler’s method for integration of the state variables Mp and XNE. The
concentration in the liquid phase CL is calculated via an iteration procedure as
described in Appendix 2 of Leistra et al. (12) and in Appendix 4 of FOCUS (18).

Concentration was measured in the desorption solution of the TDS laboratory
studies after adding a measured volume of calcium chloride solution VADD. Thus,
the concentration measured in the supernatant of the soil-water suspension was
used rather than the concentration in the soil porewater before desorption.

It is generally assumed that during the desorption period of 24 h full
equilibrium is reached and that desorption from the non-equilibrium sites in this
period of time can be ignored. Therefore, using the mass balance eq (9) the
following relationship (16) is obtained. It presumes mass conservation and equal
concentrations sorbed at the non-equilibrium sites in the moist soil and in the
soil-water suspension:

with:

Subscript MS Moist soil system
Subscript SUS Soil-water suspension system
VADD Volume of calcium chloride solution added to the soil at

each sampling point just before starting the 24 h desorption
experiment (mL)

Eq (16) was solved by PEARLNEQ at each time point for CL,SUS using eq (10)
and CL,SUS was provided as output along with the total mass in the system.

As an additional output the distribution coefficient was calculated, which
generally varies with time. To differentiate this distribution coefficient from
the Freundlich coefficients used by the model it is also called apparent sorption
coefficient. The increase of this variable over time may serve as additional
evidence for time-dependent sorption:

Details how KD was calculated in the laboratory TDS study are given in eqs
5-8. In total, five TDS model parameters were optimized (Table 1).
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Table 1. TDS Model Parameters to Be Optimized

For three out of five TDS study soils measurements of the Freundlich exponent
1/n were available on the same soils from the batch adsorption study. These were
used in the optimization runs (‘paired data’). For the remaining two soils average
Freundlich exponents calculated from all soils were used.

Leaching Models

PRZM-GW

Tier 1 groundwater estimated drinking water concentrations (EDWCs)
for BCS-01 after soil application were derived with PRZM-GW (Pesticide
Root Zone Model for Groundwater, version 1.1, January 23, 2014), using
the GW-GUI (Graphical User Interface, version 1.07, January 23, 2014)
and EPA standard scenarios (revision February 19, 2014). PRZM-GW is a
one-dimensional, finite-difference model that estimates the concentrations of
pesticides in groundwater. It accounts for pesticide fate in the crop root zone
by simulating pesticide transport and degradation through the soil profile after a
pesticide is applied to an agricultural field. PRZM-GW permits the assessment
of multiple years of pesticide application (up to 100 years) on a single site. Six
standard scenarios, each representing a different region known to be vulnerable
to groundwater contaminations, were available for use with PRZM-GW for risk
assessment purposes. In PRZM-GW simulations, each of these standard scenarios
was used. PRZM-GW output values represent pesticide concentrations in a
vulnerable groundwater supply that is located directly beneath a rural agricultural
field (19).
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FOCUS-PRZM 3.5.2

FOCUS-PRZM is a numerical leaching model officially used within the
EU pesticide registration process (20). It is a one-dimensional finite difference
numerical model to predict water and solute movement in the root zone of the
soil (3). Hydrology is estimated by the field capacity or ‘tipping-bucket’ model,
i.e. water in a soil compartment exceeding field capacity drains into the next
lower compartment within one day (4). Solute transport is described by the
Convection-Dispersion Equation.

FOCUS-PRZM 3.5.2 also contains a two-site time-dependent sorption
model similar to that used in PEARLNEQ (21). Both the PEARLNEQ and the
PRZM models are mathematically equivalent, but the TDS model parameters
are expressed slightly differently. However, they can be converted using simple
mathematical operations (14, 22). The difference between PEARLNEQ and
PRZM are the parameters used to express the sorbed concentration on the
equilibrium and non-equilibrium sites. The following equations are used by
PRZM:

with

Fraction of instantaneous equilibrium sorption sites in soil

Freundlich coefficient for total sorption in soil (equilibrium
+ non-equilibrium)

A First-order desorption rate constant (d-1)

Comparing PEARLNEQ equations (10 and 12) and PRZM equations (18 and
21), the following conversion has to be used (Table 2). When using the input
shell of FOCUS-PRZM 3.5.2 the user is required to enter the TDS parameters as
used in the PEARLNEQ definition. The program does the parameter conversion
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internally when creating the PRZM input file for the simulation run. However, if
the user directly edits the ASCII input file (as was done for the BCS-01 work),
the PEARLNEQ TDS parameters need to be converted to the FOCUS-PRZM
parameters manually before entering into the input file.

Table 2. Relationship between PEARL and FOCUS-PRZM TDS Model
Parameters

Parameter Conversion for Model Input

1. Temperature Normalization

Normalization of the half-lives of BCS-01 from 20°C to 25°C was conducted
in accordance with EPA guidance using a Q10 of 2 and the following formula (23):

T: actual study temperature (K)
Tref: reference temperature (here: 298.15 K)
DT50: half-life (d)

2. Calculation of Soil Half-Life

The final soil half-life for model input was the 90th percentile confidence
bound on the arithmetic mean half-life calculated according to (25):
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where,
DT50,input = half-life input value (d)
DT50,average = mean of sample half-lives (d)
s = sample standard deviation (d)
n = number of half-lives available
t90,n-1 = one-sided Student’s t value for α = 0.1 (i.e., 1.0-0.9)

Hydrolysis Study

Data from a hydrolysis study with BCS-01 at 50°C were additionally used in
the exposure assessment. The study had been conducted for 120 h and showed the
formation of an unknown hydrolysis product increasing with time. A hydrolysis
half-life of 219 d at 50°C was evaluated. This degradation rate was significantly
different from zero (t-test probability <0.05). The hydrolysis half-life was
normalized to a temperature of 25°C (Q10 = 2) resulting in 1240 d, which is usable
in exposure assessments.

Terrestrial Field Accumulation Studies

Experimental Setup

The long-term terrestrial field accumulation (TFA) behavior of BCS-01 at two
sites in Germany and Southern France with 6 to 8 annual applications each at
250 g/ha has been studied to investigate mobility under outdoor conditions. The
topsoil layers (0-30 cm) were of sandy loam or silt loam texture and organic carbon
contents ranged from 0.7% to 0.9%. Applications had been repeated until plateau
concentrations in soil were reached, i.e. until a steady state between soil loading
and degradation was reached and in turn the lower part of the so-called ‘saw tooth’
curve did not increase anymore over time.

Soil samplings were performed with a ‘Wacker Hammer’ and related coring
accessories (Ø 48 to 50 mm) to a depth of 75 cm. At each sampling interval,
a total of 20 soil cores were taken from treated plots. The sampling spots were
distributed randomly over the plots to obtain representative samples. Soil samples
were taken at three sampling intervals per year as determined by the events, i.e.
before application (= at the end of the winter period), after application, and in
autumn before winter dormancy.

Evaluation of Terrestrial Field Accumulation Studies

The field residue data was used in the present study to derive a Freundlich
sorption coefficient and TDS model parameters being representative for the long-
term sorption behavior of BCS-01 in the field.
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The evaluation of each TFA site consisted of two levels:

□ Level 1: Optimization of long-term equilibrium sorption parameters,
DT50TOT and of KOC,TOT, with Freundlich exponent fixed to batch
laboratory value (1/n < 1)

■ KOC,TOT is the long-term equilibrium sorption coefficient, finally
containing

• Equilibrium sorption
• Non-equilibrium sorption (TDS), although all sites are

assumed to be equilibrium sites, valid for sufficiently
long times, for equilibration

□ Level 2: Optimization of full TDS model parameters (kdes, fNE, DT50EQ)
with KOC and Freundlich exponent fixed to batch laboratory value (1/n <
1)

■ KOC (=KOC,EQ) contains equilibrium sorption only

The results of Level 1 and Level 2 were used to quantify the extent of TDS
in the field and to compare it to the laboratory TDS parameters to assess the
conservatism of groundwater modeling on Tier-2.

The comparison with the short-term batch laboratory Freundlich coefficient
should demonstrate the extent of TDS actually occurring under more realistic
field conditions. The evaluation was conducted using the leaching model PEARL,
which is considered equivalent to PRZM in terms of the description of soil
hydrology and solute transport in the vadose zone (14, 24). For the TFA sites
PEARL scenarios were developed in compliance with the North American
guidance on PRZM-GW (25):

□ Change of degradation rate with temperature according to Q10 = 2
□ No dependency of degradation rate on soil moisture
□ Increasing depth dependent dispersivities

■ 1 cm from 0 – 10 cm depth
■ 5 cm from 10 – 20 cm depth
■ 20 cm from 20 – 100 cm depth

□ Linear decrease of degradation rate with depth down to zero at 1 m

The scenarios representing the two TFA sites were parameterized using site
specific soil data and weather information from nearby weather stations. Mualem
- van Genuchten soil hydraulic parameters (θr, θs, α, n, λ, Ks) were calculated
based on texture using the ROSETTA class pedotransfer functions (26). Daily
weather data were taken from nearby weather stations (minimum and maximum
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temperature, precipitation, humidity, solar radiation, wind speed). Potential
evapotranspiration was calculated with PEARL using the Penman-Monteith
model.

The measured depth distributions at the different sampling dates of BCS-01
were fitted against simulated residues in total soil of a PEARL simulation run for
the respective TFA scenario. For this purpose, the input parameters for half-life
and sorption coefficient (or TDS parameters, depending on the type of ‘level’,
see above) were iteratively adjusted to obtain the optimum fit. This parameter
estimation process was automated with the PEST software tool for inverse
modeling (16). Residues were inversely weighted (1/x2). The ‘obs2obs’ utility
of this package was additionally used to average PEARL output concentrations
over a soil layer thickness of 10 cm to match the depth increment of the measured
residue data.

Field residues Csoil reported in units of µg/kg were converted to Csoil expressed
as kgm-3 prior to optimization to match the unit of the PEARL parameter ‘ConSys’
describing the concentration in different soil depths:

As measured values were not available the dry soil bulk density ρ of each soil
layer was calculated from its organic carbon fraction (fOM in g/g) by the following
pedo transfer function which is also implemented in FOCUS-PEARL (12):

Finally, for graphical representation the results were converted to
concentrations Csoil in units of g/ha according to the following formula:

with:
hsoil layer = 0.1 m (thickness of soil layer)

Results and Discussion
Freundlich Sorption Parameters

In the laboratory adsorption study BCS-01 exhibited a pronounced non-linear
sorption isotherm with an arithmetic mean Freundlich exponent of 0.83 (Table 3).
Figure 2 shows the adsorbed concentration plotted against the liquid concentration
at equilibrium, which assumes the typically curved shape of the Freundlich
isotherm. This curvature is responsible for the fact that at lower concentrations
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sorption, i.e. the distribution coefficient, is higher than at higher concentrations.
For comparison, the linear isotherm that PRZM-GW assumes by default is also
depicted. It is evident that for liquid concentrations below one mg/L the actual
sorption as indicated by the Freundlich isotherm is considerably stronger than
the value according to the linear isotherm used by PRZM-GW. Another way to
highlight the difference between both curves is looking at the actual soil-water
distribution coefficient as a function of liquid concentration at equilibrium. Figure
3 is obtained by plotting the normalized soil-water distribution coefficient KOC,D
of BCS-01 against its equilibrium concentration in the aqueous phase.

Two lines are depicted, one for non-linear Freundlich sorption using the
average Freundlich coefficient KOC,EQ and the average Freundlich exponent 1/n of
279 L/kg and 0.83, respectively. The other line shows linear sorption assuming the
same Freundlich coefficient but an exponent of 1 (to represent no concentration
dependency). The curves only intersect at the reference concentration cL,R of
1 mg/L. At lower concentrations the Freundlich sorption effect increases the
distribution coefficient KOC,D whereas for linear sorption no increase in sorption
takes place. The plotted data points of binding coefficient KOC,D at different soil
solution concentrations derived from five laboratory soils show how Freundlich
sorption with an exponent of 0.83 much better represents the sorption behavior of
BCS-01 than linear sorption assumed in Tier-1 modeling. At the lowest measured
concentration of 2 µg/L the actual soil-water distribution coefficient is about
3-times larger than assuming linear sorption.

Table 3. Laboratory Batch Freundlich Adsorption Coefficients and
Exponents of BCS-01 on Different Soils (Adsorption Time 48 h, 20°C)

Soil KOC,EQ (L/kg) 1/n

AXXa 233.2 0.765

HF 260.5 0.838

WW 233.7 0.849

PV 267.3 0.846

ST 399.7 0.837

Average 278.9 0.827

Time-Dependent Sorption Parameters

Time-Dependent Sorption Behavior

On average, a 2.1-fold increase of the distribution coefficient KOC,D was
observed over the approximately 120 days of incubation in the time-dependent
sorption study (Figure 4) compared to the KOC,D obtained after 2 d or 3 d of
incubation. The actual Freundlich sorption coefficient KOC,EQ increased by a
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factor of 1.8. Freundlich coefficients were calculated at each point in time from
KOC,D and the liquid concentration CL by inversion of eq (4). The difference
between both curves is shown exemplary for soil AXXa in Figure 5. Compared
to the batch equilibrium sorption study the Freundlich sorption coefficient KOC,EQ
increased by a factor of 1.4.

Figure 2. Sorption behavior for linear and non-linear Freundlich isotherms.
Compound BCS-01 exhibits a pronounced non-linear sorption with a mean

Freundlich exponent of 0.83.

Figure 3. Soil-water distribution coefficient KOC,D of BCS-01 normalized to soil
organic carbon content, as a function of equilibrium concentration of BCS-01
in the aqueous phase of a laboratory batch adsorption/desorption study. The

symbols represent measured values on five different soils.

314

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



A time dependency of chemical binding to soil over severalmonths is common
for crop protection products. It is an important compound property that should be
included in a refined, i.e. Tier-2, groundwater exposure assessment, because the
travel time to groundwater is comparatively long and therefore exposure is driven
by the long-term sorption behavior as shown in Figure 4.

Figure 4. Increase of sorption coefficient KOC,D over time on five soils. Average
increase was 2.1-fold compared to day 2 or 3. Symbols represent measurements
on different soils. The solid line is an interpolation through all data points.

Figure 5. Distribution coefficient KOC,D (triangles) and Freundlich coefficient
KOC,EQ (dots) for soil AXXa over time in the time-dependent sorption study. KOC,D
and KOC,EQ increase by a factor of 1.9 and 2.4, respectively between 2 days
and 121 days after application. Solid and dashed lines are best fits through

data points.
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Total Soil Degradation in Time-Dependent Sorption Study

As the TDS study was a combined degradation and time-dependent sorption
study, single-first order half-lives for the total soil compartment DT50TOT were
also evaluated, which ranged from 210 d to 464 d (Table 4).

Table 4. Laboratory Single-First Order Soil Degradation Half-Lives
DT50TOT (in Days) of BCS-01 at 20°C in the TDS Study

Soil Study 1 Study 2

HF 210 221

AXXa 464 231

WW 250 339

AIIIa/DD 162 165

Average 255

Note: These half-lives were derived based on degradation in the total compartment of the
soil; no TDS model was applied.

Time-Dependent Sorption Model Parameters

The TDS model parameters for BCS-01 were derived based on the
experimental data provided in two laboratory studies on five different soils. As
an example the results for soil HF are discussed here. Figure 6 shows the decline
of the total mass of BCS-01 from soil including the liquid phase (top) and of the
concentration in the liquid phase (bottom). The first two data points (days 0 and 1)
have not been used for the fit in order to focus the optimization on the long-term
sorption behavior. The apparent distribution coefficient KD at each time point
was calculated based on observed and simulated concentrations (Figure 7). The
agreement between measured and calculated KD was very close demonstrating
that the chosen TDS model was capable of capturing the increased sorption with
time very well.

In addition, a standard equilibrium optimization was carried out without
TDS, assuming that only equilibrium sorption sites are available (i.e., fNE = 0 and
kdes = 0). In this case only three parameters were optimized (KOM,EQ, Mini, and
DT50EQ = DT50TOT). It became obvious from visual assessment of total mass
and concentration in the liquid phase that the assumption of equilibrium sorption
alone could not account for the biphasic decline behavior of BCS-01 in both
compartments (Figure 8). The TDS model, however, was capable of describing
well the slowdown of degradation with time. Furthermore, the increase in KD
over time could not be captured without TDS (Figure 9). In contrast, the almost
threefold increase of KD was well captured by the TDS model (Figure 7). The
five TDS parameters obtained by optimization for all five soils are compiled in
Table 5.

316

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Figure 6. Observed vs. calculated total mass (top) and concentration in the
liquid phase (bottom) for soil HF; TDS model fitted for fNE, kdes, KOM,EQ, DT50EQ,

Mini with PEARLNEQ.

Figure 7. Observed vs. calculated soil-water partitioning coefficient KD (top)
and calculated mass sorbed at equilibrium and non-equilibrium sites (bottom) for
soil HF; TDS model fitted for fNE, kdes, KOM,EQ, DT50EQ, Mini with PEARLNEQ.
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Figure 8. Observed vs. calculated total mass (top) and concentration in the
liquid phase (bottom) for soil HF; no TDS model used, fitted only for KOM,EQ,

DT50TOT, Mini with PEARLNEQ.

Figure 9. Observed vs. calculated soil-water partitioning coefficient KD (top) and
calculated mass sorbed at equilibrium and non-equilibrium sites (bottom) for soil
HF; no TDS model used, fitted only for KOM,EQ, DT50TOT, Mini with PEARLNEQ.
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In contrast to the equilibrium sorption model alone, only the TDS model was
able to describe the results of the TDS study with BCS-01, i.e. total concentration
in soil, concentration in the liquid phase and the soil-water distribution coefficient.
Especially, the increase of the apparent sorption coefficient KD at each time point,
experimentally apparently increasing by a factor of about 3 could bewell explained
by the TDS model (Figure 7).

As sorption of organic compounds to soil is a determining factor of their
mobility in the environment, the refined approach using TDS is considered
appropriate for higher-tier groundwater exposure assessment.

Table 5. Fitted Time-Dependent Sorption (TDS) Model Parameters for
BCS-01 Using PEARLNEQ Software

Soil fNE kdes (d-1) DT50EQ
(20°C) (d)

Mini (µg) KOM,EQ
(L/kg)

HF 0.51 0.0178 171.1 69.1 128.7

AXXa 0.49 0.0174 167.2 70.2 161.5

WW 0.47 0.0234 235.9 69.4 156.6

AIIIa 0.57 0.0114 124.9 70.0 130.9

HF 0.44 0.0227 157.6 65.2 120.8

AXXa 0.48 0.0346 312.6 62.7 110.0

WW 0.43 0.0238 190.3 66.0 143.2

DD 0.28 0.0296 140.4 62.4 102.8

Average 0.46 0.0226 187.5 66.9 131.8

Leaching Modeling

Tier-1 Groundwater Exposure Assessment with Linear Freundlich Sorption

The Tier-1 PRZM-GW calculations were based on the input parameters for
the Freundlich sorption coefficient and laboratory soil degradation half-lives
following the general guidance on PRZM-GW. The input parameters are compiled
in Table 6. Resulting estimated drinking water concentrations (EDWCs) are
given in Table 7.

Due to the only slight differences between highest daily and post breakthrough
concentrations, the following higher-tier exposure assessments were only
evaluated for the former type of concentration.
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Table 6. Input Parameters for Tier-1 PRZM-GW Calculations of BCS-01

Input Parameter (Unit) Value

Aerobic soil degradation half-life DT50TOT (25°C) (d), 90th
percentile confidence bound on the average half-life 215

Hydrolysis half-life (25°C) (d) 1240

Adsorption coefficient (L/kg) 279

Application date (dd-mm) 19-05

Application method 1 (ground)

Application rate (g/ha) 140

Number of applications 1

Application retreatment annually

Duration of simulation (y) 100

Table 7. Results of Tier-1 PRZM-GW Estimated Drinking Water
Concentrations (EDWCs) of BCS-01, Soil Application, 140 g/ha, 100 Years

of Simulation

EPA Scenario
Highest Daily

Value
(µg/L)

Post
Breakthrough
Average
(µg/L)

Average
Simulation
Breakthrough

Time
(d)

Wisconsin 16.5 14.2 6104

North Carolina 7.38 5.92 4604

Georgia 3.04 2.79 5821

Florida - Potato 0.466 0.329 6641

Florida - Citrus 10.8 9.37 3509

Delmarva 9.73 8.62 4447

Equivalence of models PRZM-GW and FOCUS-PRZM 3.5.2

To ensure modeling compliance with North American regulatorymethods, the
output concentrations of PRZM-GW and FOCUS-PRZM 3.5.2 were compared for
all six EPA standard scenarios using 100 years of weather data. Freundlich sorption
and TDSwere turned off in FOCUS-PRZM3.5.2 to be consistent with the standard
PRZM-GW requirements (1/n = 1.0, fNE = 0, kdes = 0). The model input parameters
were taken from Tier-1 modeling (Table 6).

320

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Small differences of highest daily concentrations between both models were
observed. The model output concentration of FOCUS-PRZM 3.5.2 was always
slightly higher compared to PRZM-GW. Deviations ranged from 0.3% to 4.2%
(Table 8). As an example, the concentration-to-time curves for the North Carolina
and the Wisconsin EPA standard scenarios are depicted in Figure 10 and Figure
11, respectively.

Table 8. Highest Daily Concentrations of BCS-01 in 6 EPA Standard
Scenarios Calculated with PRZM-GW and FOCUS-PRZM 3.5.2 (Soil

DT50TOT 215 Days, Hydrolysis DT50 1240 Days, KOC,EQ 279 L/kg, 140 g/ha,
100 Years of Simulation)

EPA Highest Daily Value BCS-01 (ug/L) % Deviation

Scenario PRZM-GW FOCUS-PRZM 3.5.2

WI 16.5 17.2 4.2

NC 7.38 7.46 1.2

GA 3.04 3.08 1.1

FL-potato 0.466 0.473 1.6

FL-citrus 10.8 10.8 0.3

Delmarva 9.73 9.98 2.5

Figure 10. Concentration of BCS-01 in groundwater at North Carolina EPA
standard scenario using 100 year weather data calculated with PRZM-GW and
FOCUS-PRZM 3.5.2. Freundlich and time-dependent sorption were turned off
in FOCUS-PRZM 3.5.2. Annual soil loading 140 g/ha, soil DT50TOT 215 d,

hydrolysis DT50 1,240 d, KOC,EQ = 279 L/kg.
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As PRZM-GW as currently released does not support Freundlich or time-
dependent sorption, FOCUS-PRZM3.5.2was used for all calculationswith refined
sorption assumptions (Tier-2) based on the similarity of both models.

Figure 11. Concentration of BCS-01 in groundwater at Wisconsin EPA
standard scenario using 100 year weather data calculated with PRZM-GW and
FOCUS-PRZM 3.5.2. Freundlich and time-dependent sorption were turned off
in FOCUS-PRZM 3.5.2. Annual soil loading 140 g/ha, soil DT50TOT 215 d,

hydrolysis DT50 1,240 d, KOC,EQ = 279 L/kg.

Tier-2 Groundwater Exposure Assessment with Time-Dependent Freundlich
Sorption

A higher-tier groundwater exposure assessment for the six EPA standard
scenarios was conducted, applying laboratory non-linear Freundlich sorption
and time-dependent sorption (TDS) parameters, using FOCUS-PRZM 3.5.2.
The standard batch equilibrium sorption coefficient of 279 L/kg was used along
with the Freundlich exponent of 0.83 (Table 3). The TDS model parameters
fNE, kdes and DT50EQ were taken from the evaluation of the laboratory TDS
study (Table 5). For fNE and kdes arithmetic mean values were used. For the
equilibrium DT50EQ the 90th percentile on the average of the individual DT50EQ,
normalized to 25°C, was selected for model input (Table 9). Estimated drinking
water concentrations (EDWCs) with FOCUS-PRZM 3.5.2, taking into account
Freundlich sorption and time-dependent Freundlich sorption, are given in Table
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10. Comparing these Tier-2 results to the Tier-1 EDWCs, with linear Freundlich
sorption, shows a significant reduction of the groundwater exposure. The median
reduction of the highest daily values for all 6 scenarios can be described by a
factor of 3 applying Freundlich sorption only and by a factor of 5 with combined
Freundlich and time-dependent sorption. As an example, the effect of non-linear
Freundlich sorption and of non-linear Freundlich sorption with TDS on drinking
water concentration at the Georgia scenario is depicted in Figure 12. Non-linear
Freundlich sorption reduces the drinking water concentration by a factor of 4
compared to Tier-1 (linear sorption) and with additional TDS the reduction is
10-fold. Generally, reduction factors on Tier-2 become higher with decreasing
concentrations on Tier-1. Both compound properties, Freundlich sorption and
TDS, reduce mobility of the compound, thus leaving more residence time for
BCS-01 in the upper soil layers where most of the degradation actually occurs.
As can be seen from Figure 12, breakthrough of BCS-01 in the Georgia scenario
takes about 15 years on Tier-1, 45 years on Tier-2 with Freundlich sorption and
65 years with Freundlich sorption and TDS. Highest concentrations of BCS-01
are predicted for the Wisconsin scenario (Table 10) due to the smallest organic
carbon content in topsoil (0.46% from 0 – 20 cm) and the lowest annual average
temperature (8°C) of all scenarios. These environmental conditions lead to an
increased mobility in soil and slowdown of degradation, respectively.

Figure 12. Estimated drinking water concentration at the Georgia EPA standard
scenario based on different tiers of the exposure assessment (LS: linear sorption,

NLS: non-linear Freundlich sorption, TDS: time-dependent sorption).
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Table 9. Input Parameters for Tier-2 FOCUS-PRZM 3.5.2 Calculations of
BCS-01

Input Parameter (Unit) Tier-1, linear
sorption

Tier-2,
non-linear
sorption

Tier-2,
non-linear
sorption and

TDS

Aerobic soil degradation half-life in
total compartment DT50TOT (d)

215 215 n/a

Aerobic soil degradation half-life in
equilibrium compartment DT50EQ (d)
*

n/a n/a 154

Ratio of Freundlich coefficient at
non-equilibrium and equilibrium sites
fNE

n/a n/a 0.46

Desorption rate constant kdes (d-1) n/a n/a 0.023

Hydrolysis half-life (d) 1,240 1,240 1,240

Freundlich adsorption coefficient in
equilibrium compartment KOC,EQ
(L/kg)

279 279 279

Freundlich exponent 1/n 1 0.83 0.83

Application date (dd-mm) 19-05 19-05 19-05

Application method 1 (ground) 1 (ground) 1 (ground)

Application rate (g/ha) 140 140 140

Number of applications 1 1 1

Application retreatment annually annually annually

Duration of simulation (y) 100 100 100
* The DT50EQ is only valid in combination with the TDS model as degradation is – by
definition – confined to the equilibrium compartment of the soil.

Evaluation of Time-Dependent Sorption in the Field

Optimization of Long-Term Sorption Coefficient

In a first step (Level 1), the long-term (effective) Freundlich sorption
coefficient, normalized to the organic carbon content, KOC,TOT and the
corresponding degradation half-life DT50TOT of BCS-01 at the German and
French TFA sites were optimized using PEARL and PEST. The Freundlich
exponent 1/n was fixed to 0.807 for the German site, which is the average of the
two laboratory values obtained for the corresponding soils ‘AXXa’ and ‘WW’
(Table 3). It was fixed to 0.827 for the French site, which was the average of
the five laboratory values obtained in the batch equilibrium sorption study as no
measurements on comparable laboratory soils were available (Table 3).
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Table 10. Results of Tier-1 PRZM-GW and Tier-2 FOCUS-PRZM 3.5.2
Estimated Drinking Water Concentrations (EDWCs) for BCS-01, Soil

Application 140 g/ha (Highest Daily Values)

Tier-1, linear
sorption

Tier-2, non-linear
sorption

Tier-2, non-linear
sorption and TDS

EPA Scenario
FOCUS-PRZM

(µg/L)
FOCUS-PRZM

(µg/L)
FOCUS-PRZM

(µg/L)

Wisconsin 17 10 8.3

North Carolina 7.5 2.1 1.4

Georgia 3.1 0.78 0.31

Florida - Potato 0.47 9×10-5 1×10-6

Florida - Citrus 11 4.4 3.0

Delmarva 10 3.9 2.2

Visual fits to the observed data can be seen in Figure 13 to Figure 17 for the
total soil profile as well as for individual layers for the German site and in Figure
18 to Figure 22 for the French site. Layers beyond 40 cm, i.e. 40 cm – 50 cm,
50 cm – 60 cm, and 60 cm – 75 cm were included in the fit. However, these are
not depicted here, due to the low residues found (all below LOQ). So, leaching of
BCS-01 was minimal under real-world field conditions.

The topmost layer (0-10 cm) shows some inconsistencies in the experimental
residue data. Residues in the German and the French trial increased substantially
in April 2010 without application. It is assumed that the application had not
been conducted homogenously and sampling was not representative enough to
compensate for it. In addition, in some years (e.g. for German trial in 2005,
2006, 2011, 2012; French trial: 2006, 2008, 2009) the increase of residues due
to application did not match the nominal application rate (250 g/ha). Presumably
the actual application rate was smaller than the nominal.

In the topmost layers (0-10 cm) the simulated residues were lower than
observed ones, because the model attributed more material into the second layer
(10 cm – 20 cm) as actually observed and thus overestimated the downward
movement of BCS-01. Also the increase of the residues above LOQ in the third
soil layer (20 cm – 30 cm) at the end of the study was well captured by the model
for both field sites. Residues in the fourth layer (30 cm – 40 cm) were mostly
below LOD (1.5 µg/kg), i.e. a concentration range by definition too unreliable to
include in a visual assessment. In conclusion, the model predicted more leaching
in the field than was actually observed.

The results of the parameter optimization are compiled in Table 11. The
estimated KOC,TOT of 587 L/kg and 414 L/kg from the long-term TFA studies
in Germany and France are about 2.5- and 1.5-fold greater than the average
laboratory batch KOC,EQ of 233 L/kg (Table 3, soils ‘AXXa’ and ‘WW’) and 279
L/kg (Table 3, all soils), respectively. This provides evidence for an actually
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much stronger sorption under long-term field conditions than under short-term
laboratory conditions. In addition, a significantly smaller half-life DT50TOT of
184 days was determined under German field conditions compared to the average
of 321 days on both corresponding laboratory soils (Table 4, soils ‘AXXa’ and
‘WW’). The field half-life of 211 days derived for the French site was comparable
to the average DT50TOT of 255 days in all laboratory soils (Table 4).

Table 11. Fitting Results of KOC,TOT and DT50TOT of BCS-01 in German and
French Terrestrial Field Accumulation (TFA) Trials, Assuming Nonlinear

Sorption (95% Confidence Limit)

Optimized, fitted, at field Fixed

TFA Site KOC,TOT (L/kg) DT50TOT (d) 1/n

Germany 587 (536-642) 184 (158-213) 0.807

France 414 (398-430) 211 (205-217) 0.827

Table 12. Effect of Initial Values for KOC,TOT and DT50TOT on the Result
of Optimization for the German Terrestrial Field Dissipation Trial (SSQ:

Sum of Squared Weighted Residuals)

Initial Values Optimized Values

KOC,TOT (L/kg) DT50TOT (d) KOC,TOT (L/kg) DT50TOT (d) SSQ

172 200 587 184 1.237 × 1013

345 100 587 184 1.237 × 1013

517 300 587 184 1.237 × 1013

50 50 29 25 1.284 × 1013

PEST determined a rather high correlation coefficient of 0.90 between
both parameters KOC,TOT and DT50TOT for the German site suggesting that the
optimization result may not be a unique solution. Therefore, the effect of different
sets of initial parameters on the outcome of the optimization was evaluated to
ensure that the global minimum of the objective function was actually found
by PEST (Table 12). Finally, the parameter combination with the smallest sum
of squared weighted residuals (SSQ) was chosen. The correlation coefficient
between both parameters at the French site, however, was moderate (0.77).
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Figure 13. Simulated vs. observed total soil residue of BCS-01 in German TFA
study (entire soil profile, 0-75 cm). Sorption coefficient KOC,TOT with non-linear

Freundlich isotherm and soil half-life DT50TOT were optimized.

Figure 14. Simulated vs. observed total soil residue of BCS-01 in German TFA
study (layer 0-10 cm). Sorption coefficient KOC,TOT with non-linear Freundlich

isotherm and soil half-life DT50TOT were optimized.
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Figure 15. Simulated vs. observed total soil residue of BCS-01 in German TFA
study (layer 10-20 cm). Sorption coefficient KOC,TOT with non-linear Freundlich

isotherm and soil half-life DT50TOT were optimized.

Figure 16. Simulated vs. observed total soil residue of BCS-01 in German TFA
study (layer 20-30 cm). Sorption coefficient KOC,TOT with non-linear Freundlich

isotherm and soil half-life DT50TOT were optimized.
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Figure 17. Simulated vs. observed total soil residue of BCS-01 in German TFA
study (layer 30-40 cm). Sorption coefficient KOC,TOT with non-linear Freundlich

isotherm and soil half-life DT50TOT were optimized.

Figure 18. Simulated vs. observed total soil residue of BCS-01 in French TFA
study (entire soil profile, 0-75 cm). Sorption coefficient KOC,TOT with non-linear

Freundlich isotherm and soil half-life DT50TOT were optimized.
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Figure 19. Simulated vs. observed total soil residue of BCS-01 in French
TFA study (soil layer 0-10 cm). Sorption coefficient KOC,TOT with non-linear

Freundlich isotherm and soil half-life DT50TOT were optimized.

Figure 20. Simulated vs. observed total soil residue of BCS-01 in French
TFA study (soil layer 10-20 cm). Sorption coefficient KOC,TOT with non-linear

Freundlich isotherm and soil half-life DT50TOT were optimized.
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Figure 21. Simulated vs. observed total soil residue of BCS-01 in the French
TFA study (soil layer 20-30 cm). Sorption coefficient KOC,TOT with non-linear

Freundlich isotherm and soil half-life DT50TOT were optimized.

Figure 22. Simulated vs. observed total soil residue of BCS-01 in French
TFA study (soil layer 30-40 cm). Sorption coefficient KOC,TOT with non-linear

Freundlich isotherm and soil half-life DT50TOT were optimized.
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Optimization of TDS Parameters

In a second step (Level 2), the TDS parameters fNE, kdes, and DT50EQ of BCS-
01 were evaluated from the German and French field accumulation trials, using
PEARL and PEST software. In parallel, the Freundlich parameters KOC,EQ and
1/n were fixed to average data of the laboratory batch adsorption study (German
site: average for soil AXXa, WW; French site: average all soils, Table 3). The
results are compiled in Table 13. The model fits to the observed data points were
very similar to those obtained when fitting the adsorption coefficient (previous
paragraph) and were therefore not depicted here. This similarity suggests that both
approaches are equivalent, which is discussed at the end of this chapter.

Table 13. Fitting Results of TDS Parameters of BCS-01 in German
and French Terrestrial Field Accumulation (TFA) Trials, Assuming

Time-Dependent Freundlich Sorption (95% Confidence Limit)

Optimized Fixed

TFD Trial fNE kdes (d-1) DT50EQ (d) 1/n KOC,EQ
(L/kg)

Germany 1.6
(1.3-1.9)

0.1
(0.02-0.5) 70 (63-77) 0.807 233

France 0.47
(0.41-0.54)

0.035
(0.002-0.7) 142 (138-146) 0.827 279

A pronounced TDS effect was found at the German site as indicated by an
fNE of 1.6 (Table 13). This would mean that the time-dependent non-equilibrium
sorption capacity is 160% of the instantaneous, equilibrium sorption capacity (eq
11) or, in other respects, 62% of the total sorption capacity is due to time-dependent
non-equilibrium sorption sites (eq 19 and Table 2, relation between Freundlich
coefficient for total sorption in soil KF,TOT and fNE). The TDS at the French site
was smaller but still significant with fNE of 0.47. Here, the time-dependent non-
equilibrium sorption capacity was 47% of the instantaneous sorption capacity or
still 32% of the total sorption capacity was due to time-dependent non-equilibrium
sorption sites.

The fNE parameter determined in the German field is significantly greater than
estimated in corresponding laboratory soils (average of soils AXXa, WW, 0.47,
Table 5). This indicates a stronger TDS effect under long-term field conditions
than under short-term laboratory conditions. The fNE value for the French site is
comparable to the laboratory derived value of 0.46 (average of all soils, Table 5).
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The desorption rate constants kdes in the field amounted to 0.1 d-1 and 0.035
d-1 at the German and French site, respectively (Table 13), which corresponds to
a half-lives for the exchange between equilibrium and non-equilibrium sorbed
substance of about 7 days and 20 days. However, the large 95% confidence
intervals showed that this parameter could not be determined reliably in the field
experiment. In the corresponding laboratory soils it amounted to 0.025 d-1 and
0.023 d-1, which equals a half-life of 28 d and 30 d for the exchange between
equilibrium and non-equilibrium sorbed substance (Table 5, German site: average
of soils AXXa, WW; French site: average of all soils).

Time-dependent sorption takes place at a certain time scale, which is
characterized by desorption rate constant kdes. If the time scale studied is
much longer, time-dependent sorption effects cannot be detected anymore.
The sampling intervals were half years, which also explains kdes could not be
determined reliably in the inverse modelling.

The fitted half-life in the equilibrium domain at the German and French sites,
DT50EQ, was 70 days and 142 days, respectively. Corresponding soils in the time-
dependent laboratory study resulted in higher DT50EQ of 227 days and 188 days
(Table 5, German site: average of soils AXXa, WW; French site: average of all
soils). This half-life DT50EQ is valid only in combination with the TDS model.

Equivalence of a Long-Term Equilibrium Sorption Model and TDS Model

The approaches used on Level 1 (optimization of long-term equilibrium
sorption coefficient KOC,TOT and DT50TOT) and Level 2 (Optimization of TDS
model parameters, fNE, kdes, DT50EQ) were found to be equivalent in describing
the mobility of BCS-01 in soil. On Level 1, the fitted field-KOC,TOT contains
contributions, both from (short-term) equilibrium and long-term non-equilibrium
sorption, although all sorption sites are assumed to be equilibrium sorption sites.
This might be valid, especially in case of long times (long experimental duration),
for equilibration.

On Level 2 the KOC,EQwas fixed to the laboratory derived value accounting for
equilibrium sorption only. Then, all information on non-equilibrium sorption in
the field is added by fitting the TDS model parameters fNE and kdes to experimental
field data.

Both approaches are interrelated. The Freundlich sorption coefficient KOC,TOT
obtained on Level 1 can be calculated from fNE optimized on Level 2, according
to the relationship given in Table 2. The additional TDS model parameter, the
desorption rate constant kdes, could not be derived reliably and was not sensitive
to describe the downward movement of BCS-01. Time-dependent sorption takes
place at a certain time scale which is characterized by kdes and is usually, and also
in this study, in the order of only a few weeks. If the time scale studied is much
longer, time-dependent sorption effects cannot be detected anymore. The sampling
intervals were half years. This also explains why it was not possible to identify
kdes in the inverse modelling.
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Table 14 shows that the resulting sorption parameters on Levels 1 and 2 are
very similar.

Table 14. Comparison of Fitted Sorption Parameters of BCS-01 at the Field
Obtained with Equilibrium Sorption (Level 1) or Time-Dependent Sorption

(Level 2) (95% Confidence Limit)

TFA Site Level 1, long-term equilibrium
sorption

Level 2, time dependent equilibrium
and non-equilibrium sorption

KOC,TOT KOC,EQ × (1+fNE)

Germany 587 (536-642) 606 (536-676)

France 414 (398-430) 410 (393-430)

Table 15 shows that the back calculation of the half-life for the total soil
domain on Level 2 (eq 15) gives almost the same values as obtained on Level
1.

Table 15. Comparison of Fitted Half-Lives of BCS-01 at the Field Obtained
with Equilibrium Sorption (Level 1) or Time-Dependent Sorption (Level

2) (95 % Confidence Limit)

TFA Site Level 1, long-term equilibrium
sorption

Level 2, time dependent equilibrium
and non-equilibrium sorption

DT50TOT DT50EQ × (1+fNE)

Germany 184 (158-213) 182 (161-203)

France 211 (205-217) 209 (200-219)

Based on the comparison of these parameters, KOC and DT50, (Table 14 +
Table 15), it can be seen, that the model approaches seem to be equivalent to
describe the mobility of BCS-01 in soil:

1. Long-term equilibrium sorption, with an effective KOC,TOT and DT50TOT.
2. Time dependent sorption (TDS) model, with fNE, kdes, DT50EQ and

KOC,EQ.

Conclusions

The groundwater exposure assessment for compound BCS-01 with PRZM-
GW and Tier-1 assumptions has been shown to be overly conservative. The use
of laboratory non-linear Freundlich sorption on Tier-2 makes the assessment more
realistic (median 3-fold reduction in EDWC across all 6 EPA standard scenarios
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compared to PRZM-GW and Tier-1), yet still conservative. Additional laboratory
time-dependent sorption further increases the realism of the assessment while still
maintaining its conservatism (median 5-fold reduction in EDWC across all 6 EPA
standard scenarios compared to PRZM-GW and Tier-1).

Based on field data it was furthermore demonstrated that the use of a
long-term Freundlich sorption coefficient was equivalent to using the mechanistic
time-dependent sorption model to describe the mobility of BCS-01. Dynamic
TDS parameters (kdes) are less relevant for long-term behavior. That is, a
simplified model may be sufficient to describe long-term sorption behavior
under field conditions. The TDS effect in the field was at least as high as in the
laboratory.
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Chapter 17

The Significance of Time-Dependent Sorption
on Leaching Potential - A Comparison of

Measured Field Results and Modeled Estimates
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A growing literature base provides evidence that the assumption
of linear, or “instantaneous equilibrium,” sorption is inadequate
for modeling the leaching potential of crop-protection products.
Clothianidin is one example of a product that possesses
non-linear and time-dependent sorption characteristics.
Standard batch equilibrium sorption coefficients are expected
to underestimate the binding of clothianidin to soil and,
therefore, do not adequately represent how clothianidin behaves
in the environment. This chapter presents the results of a
modeling assessment to evaluate the importance of considering
non-linear and time-dependent sorption in leaching modeling
for compounds with measured time-dependent sorption
characteristics. The results of field measurements are compared
to modeled estimates for three sorption isotherm scenarios:
1) linear adsorption, 2) non-linear Freundlich isotherm, and
3) time-dependent sorption. Results indicate that using
time-dependent sorption in the environmental fate model more
accurately represents field observations than the other two
sorption scenarios investigated.
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Introduction

One sorption characteristic that can be particularly important in assessing
leaching potential of crop-protection products is time-dependent sorption (TDS),
also referred to as “kinetic sorption.” TDS is an important mechanism affecting
the fate and transport of crop-protection products, and a growing literature base
indicates that the assumption of linear, or “instantaneous equilibrium,” sorption
is inadequate to simulate the leaching potential for many compounds (1–6).
Research indicates sorption kinetics for some compounds are not in equilibrium
and can vary over multiple time frames. Although a number of pesticide leaching
models include the ability to model sorption using non-linear and kinetic sorption
approaches, current regulatory models used to assess the leaching potential of
crop-protection products in North America do not presently account for TDS
properties in risk assessment (7).

Simulation models used for risk-assessment purposes by both the United
States (US) Environmental Protection Agency (USEPA) and Canada’s Pest
Management Regulatory Agency (PMRA) assume that the partition coefficient
describing soil adsorption of pesticides is both independent of concentration of the
pesticide adsorbed to the soil surface and constant over time. These assumptions
are conservative and considered by regulatory authorities to be appropriate for
the initial tiers of risk assessment (7). However, when data are available to
compare environmental fate predictions with field observations, as in the case
study presented in this chapter, it is possible to evaluate if the behavior in the field
can be associated with either or both of these two established pesticide sorption
phenomena.

A useful case study for assessing the significance of time-dependent sorption
on modeled leaching behavior is clothianidin (E)-1-(2-chloro-1,3-thiazol-5-
ylmethyl)-3-methyl-2-nitroguanidine (IUPAC), an insecticide for a wide range
of seed treatment, soil, and foliar uses in the US and Canada. Consistent with a
tiered approach to assess the risk to groundwater resources, many field studies
have been conducted and submitted to both the USEPA Environmental Fate
and Effects Division (EFED) and Canada’s PMRA to examine the dissipation
of clothianidin under field conditions (8). Laboratory degradation studies
indicate that clothianidin degrades slowly and batch adsorption/desorption studies
indicate the compound is moderately adsorbed to soil (8). Residues measured
in the field from ten terrestrial field dissipation (TFD) studies indicate limited
mobility of clothianidin, with most of the residues in soil observed in the top
45 centimeters (cm) of surficial soil with infrequent observations at depth (8).
Specific data showing the increasing sorption of clothianidin with time have also
been documented (9).

The purpose of this chapter is to present an assessment of the leaching
potential of a compound with measured TDS characteristics under three sorption
scenarios: 1) linear or “instantaneous equilibrium” sorption; 2) non-linear
Freundlich sorption; and 3) time-dependent or “kinetic” sorption. The complete
set of ten field studies for clothianidin was evaluated and is summarized in
this chapter. Simulation results from field trials conducted in Ontario and
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Wisconsin are discussed in depth as examples of the modeling exercise; however,
results from an additional seven field sites modeled are also summarized (the
tenth site was not modeled as discussed later). Examination of the modeled
versus measured results from the field studies indicates that current regulatory
models, which assume linear adsorption, can significantly over-predict potential
leaching for compounds that demonstrate non-linear and time-dependent sorption
properties. However, as discussed in this chapter, models are available that can
account for the non-linear and time-dependent sorption properties of compounds,
and these models can more accurately predict the potential fate of compounds
that demonstrate time-dependent sorption characteristics.

Materials and Methods

Regulatory models used for this assessment were developed by the USEPA,
PMRA, and the FOrum for Co-ordination of pesticide fate models and their
USe (FOCUS). Models were parameterized based on site-specific data obtained
from nine of ten TFD studies conducted in North America. Six bare-soil treated
trial sites were evaluated in the U.S. and Canada, including California, Georgia,
North Dakota, Ohio, Washington, Wisconsin, Ontario, and Saskatchewan
(8) to determine the residue levels of clothianidin and its degradates, and to
provide estimates of the dissipation time and mobility of clothianidin under field
conditions. Two turf dissipation studies were also conducted in the U.S. at test
sites located in Illinois and Mississippi. Sorption inputs in the modeling were
obtained from batch equilibrium, as well as time-dependent sorption studies.

Terrestrial Field Dissipation Studies

Table 1 summarizes location, soil texture, application rates and the calculated
field dissipation half-life (DT50) of the ten TFD studies conducted in North
America. The soil types ranged from sand to clay loam. Target application
rates ranged from 225 to 660 grams of active ingredient per hectare (g a.i./ha).
Clothianidin was applied to established turf at two sites, at target application rates
of 449 g a.i./ha. Study durations at the turf trial sites were 4 months; however,
the bare-soil treated plot studies were conducted for 21 to 32 months. Due to
typical variations of day zero mass values from the target values in TFD studies,
the initial day zero mass (M0) from the kinetics assessment is also reported and
was used in the environmental fate modeling assessment.
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Table 1. Terrestrial Field Dissipation Studies for Clothianidin Conducted in North America

Location
Depth
Obs.(cm) Mass (g a.i./ha) Target M0

Soil
0-15 cm

Soil
15-100 cm Duration (d)

DT50
(d)

CA 15 - 30 225 118 L L / SL 982 n.a.

GA 0 - 15 225 139 SL SL / SCL 730 925

IL Turf 15 - 30 449 593 SiL SiL, CL 120 67.6

MS Turf 60 - 75 449 474 CL L, SL, CL 120 238

ND 30 - 45 243 166 CL CL, SiCL, SiC 864 838

OH 45 - 60 660 515 SiCL SiCL, C, CL, SiC 735 295

ONT 15 - 30 660 536 SiL L / SiL 798 349

SK 30 - 45 243 n.a. CL SiCL, C, CL, SiC 857 n.a.

WA 15 - 30 225 177 LS LS / SL 623 206

WI 45 - 60 660 565 S S 823 399

NOTE: DT50 values and study lengths are days, depth observed (Depth Obs.) is the maximum depth interval at which residues were observed in the field
above the limit of quantitation (5 micrograms per kilogram). DT50 values for California and Saskatchewan were not available (n.a.) based on limited observed
degradation. C = clay, CL = Clay Loam, L = loam, LS = loamy sand, SiC = Silty Clay, SiCL = Silty Clay Loam, SiL = Silt Loam, S = sand, SCL = Sandy
Clay Loam, SL = Sandy Loam.
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Field studies indicated that detectable residues of clothianidin were limited
to the upper 30 centimeters (cm) of soil at four dissipation sites, with most of
the mass retained in the upper 15 cm over the duration of the studies (4 to 32
months). Even under a high vulnerability situation encountered during a study
conducted in Wisconsin on a sandy soil (92 to 96% sand) with high water input
(260 cm of rainfall/irrigation), no crop, and minimal evapotranspiration (ET), the
study showed only low concentrations of clothianidin near the limit of quantitation
(LOQ) of 5 micrograms per kilogram (µg/kg) at the 45-60 cm soil depth. Turf
studies showed that residues were confined to the 0-30 cm soil depth at the Illinois
test site and were primarily located in the 0-45 cm soil depth at the Mississippi test
site, though low level detections were observed from 45-75 cm (8).

Calculated field-dissipation half-lives ranged from 67.6 days at the Illinois site
to 925 days at the Georgia trial site. At the California and Saskatchewan test sites,
the DT50 could not be calculated under field conditions due to limited dissipation
over the trial duration.

Laboratory Studies

Table 2 summarizes the laboratory-derived aerobic soil half-life values for a
variety of different soil types. Soil organic carbon-water partitioning coefficients
(Koc), including sorption values calculated using a linear isotherm as commonly
used in PMRA groundwater risk assessments, are provided. At 20 degrees
Celsius, clothianidin degraded in two soils with first-order half-lives of 148 and
239 days (Höfchen and Laacher Hof soil series; USEPA/EFED calculated values).
In seven soils ranging in texture from sand to silt loam, half-life values ranged
from 495 to 1,155 days (BBA 2.2, Quincy, Sparta, Crosby, Gardena, Howe, and
Elder soil series). In the tenth (Fuquay) soil series, degradation was too slow to
accurately calculate the degradation rate over the 1-year study period. Half-life
values presented are consistent with USEPA’s calculations (8) based on the studies
performed by Bayer CropScience.

In laboratory batch equilibrium studies,Koc values ranged from 84 to 345 liters
per kilogram (L/kg) (8). A key observation in these studies was the Freundlich
exponent (1/n) values less than 1.0 (ranging from 0.809 to 0.865), indicating a
non-linear sorption attribute of clothianidin. The recalculated 20th percentile Koc
value, typically used by PMRA for groundwater risk assessments and used in this
environmental fate modeling assessment, was 98 L/kg assuming a linear isotherm.

A laboratory time-dependent sorption study for Clothianidin conducted with
two soils (Laacher Hof AXXa and Laacher Hof A III) showed that sorption of
clothianidin (as measured by the value of Koc) increased by a factor of 2.1 to 3.5
after incubation for 99 days (9), as illustrated on Figure 1. In contrast, OECD
Guideline 106, which is commonly used to determine Koc, allows for only a 48-
hour test period. Therefore, an assumption of linear sorption will underestimate
the binding of clothianidin to soil and fail to accurately represent how clothianidin
behaves in the environment.
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Table 2. Laboratory Half-Life Values and Adsorption Coefficients of
Clothianidin

Soil Origin Texture
Half-Life
(d)

Koc (L/kg)
Freundlich Linear 1/n

Höfchen Germany Si 148

Laacher Hof Germany SiL 239 84 78 0.815

BBA 2.2 Germany LS 495 119 103 0.865

Quincy Washington LS 533 129 109 0.835

Sparta Wisconsin S 533

Gardena N. Dakota SiL 693

Crosby Ohio SiL 578 123 109 0.822

Howe Indiana SL 990

Elder California L 1,155 345 345 0.809

Fuquay Georgia LS Stable

NOTE: Half-life values reported in days derived by USEPA (8). Laboratory calculated Koc
values in liters per kilogram (L/kg) were calculated based on Freundlich sorption isotherm.
Freundlich exponent expressed as 1/n. L = loam, LS = loamy sand, S = sand, Si = silt, SiL
= silt loam, SL = Sandy Loam.

Figure 1. Results of time-dependent sorption study of clothianidin on two
different soils.

342

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Table 3. Summary of Soil Characteristics used for Modeling

Maximum Water Content
Wilting
Point Percent Organic Carbon

Bulk
Density

Location A B C A B C A B C A B C

California 0.27 0.24 0.21 0.13 0.11 0.10 1.38 1.03 0.55 1.36 1.33 1.33

Georgia 0.17 0.22 0.26 0.07 0.13 0.17 0.32 0.16 0.08 1.78 1.60 1.61

Illinois 0.34 0.34 0.34 0.15 0.19 0.21 2.55 1.33 0.41 1.09 1.12 1.15

Mississippi 0.35 0.30 0.24 0.21 0.17 0.11 0.93 0.61 0.29 1.12 1.13 1.14

North Dakota 0.37 0.38 0.40 0.23 0.23 0.25 3.44 1.06 0.33 1.06 1.15 1.15

Ohio 0.38 0.40 0.34 0.21 0.26 0.21 1.53 0.58 0.33 1.67 1.55 1.44

Ontario 0.33 0.29 0.38 0.14 0.13 0.14 1.83 0.50 0.08 1.36 1.47 1.51

Saskatchewan 0.36 0.40 0.37 0.22 0.26 0.21 2.15 0.54 0.39 1.29 1.25 1.23

Washington 0.09 0.10 0.15 0.04 0.04 0.06 0.35 0.13 0.09 1.60 1.61 1.69

Wisconsin 0.08 0.06 0.06 0.04 0.03 0.02 0.79 0.16 0.03 1.49 1.55 1.59

NOTE: Maximum water contents and wilting points are cm3cm-3, bulk densities are g/mL. Values are averaged across key depth intervals for simplicity (A =
0 to 15 cm, B = 15 to 100 cm, C = greater than 100 cm).
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Modeling Approach

Two fate and transport models were used for modeling the potential
movement of clothianidin in soil. The first model, Pesticide Root Zone Model
for Groundwater (PRZM-GW), was developed by the USEPA and PMRA
(10) under the North American Free Trade Agreement (NAFTA) to estimate
potential pesticide concentrations in groundwater. FOCUS PRZM (11), a
similar model developed by FOCUS, was used in this assessment, as it has
the capability to simulate non-linear Freundlich sorption and kinetic sorption
(12), while PRZM-GW can only simulate linear sorption. Both models are
essentially the same conceptually and rely on the Pesticide Root Zone Model
as the primary engine (13), and only differ in the representation of the different
sorption mechanisms assumed. PRZM-GW and FOCUS PRZM predictions
were evaluated side-by-side to confirm that both models produced the same
results when parameterized by identical linear sorption algorithms. Once it
was confirmed that FOCUS PRZM reproduces PRZM-GW results under the
assumption of linear sorption, all subsequent model simulations were completed
using FOCUS PRZM.

Site-specific meteorological input files were created for each TFD trial site
for the duration of the TFD study as described below. Total daily water inputs
from each TFD were set to daily rainfall plus daily irrigation. In addition, the
runoff curve number was set to a low value to eliminate potential surface runoff as
per the NAFTA approach for leaching assessments (7). Daily evapotranspiration
provided in the TFD studies was incorporated directly into the meteorological file.
As discussed earlier, application rates used in the model were based on the initial
mass value (M0) estimated from the TFD kinetics assessments as summarized in
Table 1.

Table 3 summarizes key soils inputs obtained from the TFD studies.
Maximum water content and wilting point were based on the moisture holding
capacity at 1/10 bar calculated using the Soil Water Characteristic Estimates by
Texture and Organic tool (14). Organic matter and bulk density were obtained
from TFD soil characterization results. As eight of the ten TFD sites were bare
soil, crop parameters were not used in the model. For the Illinois and Mississippi
turf scenarios, basic turf crop parameters were based on USEPA Florida turf
scenario (15).

Table 3 illustrates the overall vulnerability of the trial locations based on soil
properties. For example, the California, Georgia, Washington, andWisconsin soils
were overall the most vulnerable based on a combination of low organic carbon
content and coarse texture (reflected by lower maximum water content).

Sorption Parameterization

All model inputs were held constant at each TFD trial site, except for the
sorption input parameters for each of the three sorption scenarios. Sorption
scenarios included a linear isotherm, a non-linear Freundlich isotherm, and both
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non-linear and time-dependent sorption. Linear sorption modeling was based on
the 20th percentile Koc and maximum Koc values (98 and 345 L/kg, respectively)
calculated based on a linear isotherm.

Non-linear sorption parameters were calculated based on laboratory batch
equilibrium studies assuming a Freundlich isotherm. Non-linear Freundlich Koc
values ranged from 84 to 129 L/kg for four test soils, and 345 L/kg for a fifth
soil with Freundlich exponent (1/n) values ranging from 0.809 to 0.865 for both
the adsorption and desorption phases. The minimum Koc (84 L/kg), arithmetic
mean (160 L/kg), and maximum Koc (345 L/kg) values from the batch adsorption/
desorption studies (8) were selected to evaluate predicted soil residues within the
bounds of the measured laboratory data. In addition, a conservative upper-bound
Freundlich exponent (0.86) was selected from the laboratory studies.

TDS was modeled in FOCUS PRZM version 3.5.2 (11). FOCUS PRZM
implements the well-established Streck model for TDS (11, 12, 16, 17). The
model requires the user to input the f,ne, which is the ratio of the Freundlich
coefficients for the non-equilibrium sorption phase (Kf,neq) and the equilibrium
sorption phase (Kf,eq). The user must also enter the first-order desorption rate
in the non-equilibrium domain (Kdes). Finally, because the model assumes that a
compound residing in the non-equilibrium domain is not subject to transformation
(i.e., is generally not available for microbial degradation), the user must also
specify an appropriate DT50 (Kt) for the equilibrium phase (aqueous phase only).
All values used for modeling are listed in Table 4.

Table 4. Sorption Parameters used for Modeling

Sorption
Scenario

Lower
Bound
Koc

Central
Tendency
Koc

Upper
Bound
Koc

Freundlich
Exponent f,ne Kdes

LS 98 n.a. 345 1.0 n.a. n.a.

NLS 84 160 345 0.86 n.a. n.a.

NLS/TDS 84 160 345 0.86 0.6 0.0313

NOTE: Linear sorption (LS) coefficients are based on a linear isotherm with a 20th
percentile Koc value equal to 98 L/kg. Non-linear sorption (NLS) and time-dependent
sorption (TDS) parameters are based on laboratory-calculated values in Table 2 and a
conservative upper-bound Freundlich exponent.

ACSL Optimize version 1.2 was used to optimize the f,ne and Kdes values
for the two available soils (Laacher Hof AXXa and Laacher Hof A III) that were
evaluated in the laboratory TDS study (9, 18). ACSL Optimize uses the maximum
likelihood, that describes the probability to obtain a given set of data assuming that
model and model parameter are correct, for the objective function. Goodness of
fit was assessed by visual observation, the Chi-square (χ2) percent error test, and
the coefficient of determination (r2).

345

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



The f,nevalues ranged from 0.541 to 0.660 with an arithmetic mean of 0.60
that was used in this modeling study (9, 18). TheKdes values were also optimized in
ACSL for the same two soils and ranged from 0.0241 to 0.0385 with an arithmetic
mean of 0.0313 that was used in this modeling study (9, 18).

Degradation Parameterization

Table 5 lists the degradation parameters used for site-specificmodeling at each
TFD trial site. For linear and non-linear sorption modeling, the DT50 calculated
from each of the TFD studies was used for modeling dissipation from 0 to 1 meter
below ground surface. Beyond 1 meter, degradation was assumed negligible,
consistent with NAFTA modeling approaches for compounds stable to hydrolysis
(7).

As noted earlier, PRZM assumes degradation is restricted to the
equilibrium sorption phase (aqueous) and that degradation does not occur
in the non-equilibrium (solid) phase due to the compound being unavailable
for microbial degradation. Because degradation is always more rapid in the
equilibrium phase than the degradation DT50 in bulk soil (12), the user must also
specify an appropriate DT50 for the equilibrium condition (aqueous phase only).
When modeling TDS in FOCUS PRZM using DT50 values based on bulk soil
studies, the residue decline data must be reevaluated and a DT50eq recalculated.
The recalculation procedure depends on the type of studies (laboratory or field
degradation studies) and the nature of the substance (parent or metabolite). An
approximation (11, 12, 19) has been developed that scales the DT50 for the total
system (DT50tot) to estimate the DT50 in the equilibrium phase (DT50eq):

where,
fne = ratio of non-equilibrium Freundlich coefficient and equilibrium

coefficient
DT50 eq = DT50 for the equilibrium condition (aqueous phase only)

Table 5. Degradation Parameters used for Modeling

Sorption Scenario GA IL MS ND OH WA WI ON

LS / NLSa 925 67.6 238 838 295 206 399 349

TDSb 578 42 149 524 184 129 249 218
a NOTE: Dissipation half-lives in days for each field trial site used in the modeling of
linear and non-linear sorption. b For TDS modeling, DT50 values are for the equilibrium
condition (aqueous phase only). California was assumed stable based on limited dissipation
observed in the TFD. Saskatchewan was not modeled based on limited movement and
dissipation.
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Goodness of Fit

Modeled results were assessed for goodness-of-fit to observed results using
the Chi-square (χ2) percent error test and the coefficient of determination (r2). The
χ2 test considers the sum of the residuals and the measurement errors as

where,
C = calculated value
O = observed value
= mean of all observed values

err = measurement error percentage
The r2 value indicates how well the observed data are replicated by the model.

The r2 value is calculated as follows:

where,
predi = predicted mass at time i

= mean of all predicted values
obsi = observed mass at time i

= mean of all observed values
n = number of observations
Generally, the best model to represent the observed data is one that visually

agrees well with observed data, has the lowest χ2 percent error, and has the highest
r2 value. These methods of assessing goodness of fit are commonly employed by
pesticide regulatory authorities in Europe (20) and North America (21).

Results and Discussions

Site-specific modeling was performed for nine of the ten dissipation studies
(Saskatchewan was not modeled due to limited movement and dissipation). The
Ontario and Wisconsin test sites are discussed in detail to illustrate the importance
of TDS for predicting the behavior of clothianidin in the environment. The Ontario
and Wisconsin test sites represent a range of soil textures, with relatively long
DT50 values, and sufficient residue mobility to test the influence of TDS on fate
and transport of clothianidin in the environment. In fact, the Wisconsin trial site
demonstrated the highest clothianidin mobility among all the bare-soil test sites.
Results are also summarized for the remaining seven sites modeled, which show
similar trends.

347

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Ontario Trial Site

One key observation at the Ontario site is that residues observed in the field
were confined to 0-30 cm soil interval. However, leaching below 30 cm was
significantly over-predicted by the model when assuming linear sorption (LS) and
a conservative Koc value as shown in Figure 2. The over-prediction of leaching
at 15-30 cm is evident by the much higher residue predicted than observed after
approximately 100 days. In addition, by the end of the 798-day study, the model
estimated zero residues in the surface layer (i.e., residues had leached), whereas
nearly 100 grams per hectare (g/ha) still remained in the surface layer in the field
study.

Figure 2. Modeled versus observed residues for the Ontario trial site based
on linear sorption and Koc of 98 L/kg.

In contrast, the best fit to the Ontario field data was achieved using non-
linear and time-dependent sorption with the mean Koc value of 160 L/kg. Figure 3
illustrates good visual agreement between modeled and measured residues in the
0-15 cm soil depth, with some over-prediction of the low-level residues observed
in the 15-30 cm interval by the end of the study.

Table 6 summarizes the model results for all eight sorption scenarios
considered at the Ontario trial site for the duration of the study, ranging from linear
sorption and a lower-bound Koc value to non-linear and TDS with increasing Koc
values. The table provides a mass balance of the mass (M) applied in the model.
The percent of the applied mass used on day zero of the model was divided into
the percent predicted to decay over the entire soil profile, the percent retained
in the interval where residues were observed in the TFD study (e.g., 0-30 cm in
Ontario) and, the percent that was estimated to leach below the maximum depth
of observed residues in the TFD (e.g., >30 cm).
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Figure 3. Modeled versus observed residues for the Ontario trial site based on
non-linear sorption and time-dependent sorption with a Koc of 160 L/kg.

Table 6. Summary of Fate and Transport Results for Clothianidin Sorption
Scenarios in Ontario for the Depth of Maximum Observed Residue

(0-30ï¿½cm) (Presented as Percent of Day Zero Mass)

Scenario: TFD LS NLS TDS

KOC: 98 345 84 160 345 84 160

M, Applied 100 100 100 100 100 100 100 100

M, Decayed 74.0 68.7 79.6 73.6 79.6 79.9 80.9 80.1

M, Retaineda 26.0 0 16.2 0.2 6.9 20.5 5.6 19.2

M, Leachedb 0 31.3 4.2 26.1 13.5 0 13.4 0.8

χ2 n.a. 27.0 17.7 24.4 19.9 17.2 20.2 17.4

r2 n.a. 0.840 0.777 0.833 0.743 0.785 0.765 0.784
a NOTE: Mass (M) retained is the percent of the applied mass retained in the depth interval
observed in the field (0-30 cm). bMass leached is the percent of the applied mass predicted
to leach below the maximum observed residue depth (30 cm) in the TFD study. No runoff
occurred based on the conservative curve number used in NAFTA groundwater scenarios to
promote infiltration and prevent runoff. TFD=Terrestrial field dissipation study, LS = linear
sorption, NLS = non-linear sorption, TDS = non-linear and time-dependent sorption.

In general, Table 6 illustrates less ability of linear sorption to accurately
predict clothianidin mobility using conservativeKoc values. For the linear sorption
scenario and Koc of 98 L/kg, 31.3% of the applied mass leached below 30 cm;
however, no mass was observed in the field below the 30-cm depth. Conversely,
for the same scenario, the model estimated no mass remaining in the 0-30 cm
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interval at the end of the 798-day study; however, 26% of the original mass was
observed in the field at the end of the study. These results show the inability of
equilibrium sorption to capture field observations when all other parameters are
held fixed. The relatively lower χ2 percent error for the 0-30 cm TDS modeling
results further illustrates the better fit to the observed data than when simulating
linear sorption only. Based on the χ2 test and comparison of the amount leached
to the actual observed leaching, linear sorption is only a reasonable fit when using
the maximum Koc value obtained from the batch equilibrium studies.

Non-linear and time-dependent sorption using the mean Koc of 160 L/kg,
as well as non-linear sorption with the upper-bound Koc value of 345 L/kg,
predicted less than 1% clothianidin leached below 30 cm, which is consistent
with field observations. The mass remaining in the 0-30 cm profile also matched
the observed data well. Specifically, 20% of the applied mass was estimated to
remain in the 0-30 cm profile, which is consistent with the 26% that remained in
the same interval in the field.

Wisconsin Trial Site

Linear sorption resulted in a poormodel fit to the observed data based on visual
inspection of predicted versus observed residues (Figure 4). Residues measured
at the Wisconsin site were detected only in the 0-60 cm soil interval; however,
modeled residues clearly over-predicted potential leaching observed in the field
early in the study. For example, when assuming linear sorption and a Koc of 98
L/kg, by 180 days, the model estimated that almost all of the clothianidin had
leached from the entire depth profile, in contrast to the field study where residues
remained in the upper 60 cm of soil for the entire study duration (823 days).

Figure 4. Modeled versus observed residues in the soil profile for the Wisconsin
trial site based on linear sorption and a Koc of 98 L/kg.
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In contrast, the best fit to the data from the Wisconsin site was achieved
using non-linear and time-dependent sorption. Figure 5 illustrates that good visual
agreement was achieved between measured and modeled results for all of the
intervals using the upper-bound Koc value of 345 L/kg.

Figure 5. Modeled versus observed residues in the soil profile for the Wisconsin
trial site based on non-linear sorption and time-dependent sorption with a Koc

of 345 L/kg.

Table 7 summarizes the model results for all eight sorption mechanisms
examined for the Wisconsin site for the duration of the study. In general, the table
shows the improvement in observed versus modeled results across the full range
of Koc values and sorption mechanisms.

Table 7 highlights the inability of linear sorption and conservative Koc values
to accurately predict the leaching potential compared to measured results in the
field (TFD). For example, in the field, 77.5% of the day zero mass decayed by the
end of the TFD with 22.5% remaining in the 0-60 cm soil interval. In contrast,
modeling based on linear sorption (LS) and the 20th percentile Koc (98 L/kg)
predicted that 86.9% of the initial mass leached to a depth below 60 cm, even
though no residues were observed below 60 cm in the TFD. In addition, the amount
of clothianidin that degraded in the full soil profile varied significantly across the
model approaches. The limited decay for the linear sorption scenarios is due to
rapid leaching past 100 cm, where the model artificially assumed zero degradation
(7). As the residence time in the biotic zone increased across the sorption scenarios,
the overall clothianidin decayed mass also increased, eventually to 76% when
considering non-linear and time-dependent sorption, which is consistent with the
77.5% observed in the TFD.
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Table 7. Summary of Fate and Transport Results for Clothianidin Sorption
Scenarios in Wisconsin for the Depth of Maximum Observed Residue (0-60

cm) (Presented as Percent of Day Zero Mass)

Scenario: TFD LS NLS TDS

KOC: 98 345 84 160 345 84 160 345

M, Applied 100 100 100 100 100 100 100 100 100

M, Decayed 77.5 13.1 50.7 16.4 36.1 68.0 32.1 56.4 76.0

M, Retaineda 22.5 0 0 0 0 2.1 0.1 1.5 16.5

M, Leachedb 0 86.9 49.3 83.6 63.9 29.9 67.7 42.1 7.5

χ2 n.a. 53.1 31.6 51.1 42.9 22.86 41.2 28.4 16.5

R2 n.a. 0.639 0.781 0.660 0.716 0.802 0.758 0.793 0.808
a NOTE: Mass (M) retained is the percent of the applied mass retained in the depth interval
observed in the field (0-60 cm). bMass leached is the percent of the applied mass predicted
to leach below the maximum observed residue depth (60 cm) in the TFD study. TFD =
Terrestrial field dissipation study, LS = linear sorption, NLS = non-linear sorption, TDS =
non-linear and time-dependent sorption.

The lower χ2 percent error and higher r2 value for the TDS modeling further
illustrates the better fit to the observed data than when simulating linear sorption
only. For example, the χ2 percent error of 31.6% assuming linear sorption and
the maximum Koc value decreased by nearly a factor of two when accounting
for TDS. For TDS modeling using the upper-bound Koc the good visual fit, low
χ2 percent error, and high r2 value confirm the importance of including the TDS
characteristics of clothianidin, particularly on the most vulnerable soils.

All Sites

Table 8 illustrates the best fit models for the nine modeled trial sites for the
range of Koc values measured and the three sorption mechanisms, including linear
sorption, non-linear sorption, as well as non-linear and time-dependent sorption.
The table shows the percent of the applied mass predicted that leached below
the maximum observed residue depth from each TFD trial site. Zeroes in the
table indicate good agreement between the predicted and the observed maximum
depth of residue reached in soil profile. In contrast, high values indicate the
model over-predicted a significant amount of the applied mass leached below
the maximum depth of observed residues in the field (see Table 1 for depth of
maximum leaching). For example, the 91% in Georgia (linear sorption and Koc of
98 L/kg) indicates the model predicted 91% of the applied mass to leach below
15 cm; however, no residues were observed below 15 cm in the field.

352

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Table 8. Summary of Modeled Leaching Potential below Maximum Observed Depth for Clothianidin Sorption Scenarios (Expressed
as Percent of Applied)

Scenario:
KOC:

LS
98 345 84

NLS
160 345 84

TDS
160 345

Soil
Texture

Excess
Water

Illinois 0.1 0 0 0 0 0 0 n.a. M H

Mississippi 0.1 0 0 0 0 0 0 n.a. F/M H

N. Dakota 26.6 0 2.3 0 0 0 0 n.a. F/M M

Ohio 14.9 0 7.5 0 0 0.2 0 n.a. F/M M

Ontario 31.3 4.2 26.1 13.5 0 13.4 0.8 n.a. M M

California 100 96.3 99.9 96.6 8.7 95.9 52.5 0 C H

Wisconsin 86.9 49.3 83.6 63.9 29.9 67.8 42.1 7.5 C H

Washington 82.4 42.5 78.0 56.0 26.0 57.5 33.7 13 C H

Georgia 91.0 57.3 88.7 81.6 65.7 80.9 69.8 57.3 C H

NOTE: Percent leached is the percent of the applied mass that leached below the maximum observed residue depth in the field study (Table 1) for linear
sorption (LS), non-linear sorption (NLS), and non-linear and time-dependent sorption (TDS). Scenarios with less than 15% predicted to leach below the
maximum observed depth (underlined) are in reasonable agreement with predicted and observedmaximum leaching depth. Soil texture abbreviations:
M= medium, F/M = fine to medium, C = coarse. Excess moisture inputs indicated as medium (M) to high (H) based on less than or greater than 2 millimeters
per day of excess moisture input on average, respectively.
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In general, the linear sorption scenario as used in PRZM-GW performs
reasonably well for certain scenarios (e.g., fine to medium soil texture and higher
organic carbon content), but over-predicts leaching at the high vulnerability sites
(less than 1% organic carbon, coarse-textured soils, and high excess moisture
input). For example, for the turf trial sites in Illinois and Mississippi, reasonable
agreement was achieved for all sorption scenarios and the full range of Koc values
under the linear sorption scenario. Observed residues in Ohio and North Dakota
bare-soil treated plots were also comparable to modeled estimates under the
non-linear Freundlich sorption scenarios, even with a conservative Koc value of
84 at the Ontario site.

For the most vulnerable sites—including Wisconsin, Washington, and
Georgia where organic carbon was less than 1%, soils were coarse-textured, and
excess moisture input was relatively high—the model over-predicts leaching
potential compared to observed when equilibrium sorption is assumed, but more
closely approximates field observations when NLS and TDS are assumed. The
Georgia site illustrates lower sensitivity to TDS at sites with negligible organic
carbon and coarse soil texture. For example, organic carbon in Georgia was
generally 0.3% or less; therefore, inclusion of non-linear and TDS sorption
characteristics had less influence due to the comparatively lower organic carbon
content than the remaining sites. The poor comparison of modeled and measured
values at this site indicates that other factors may have retarded the leaching of
clothianidin.

Conclusions

Results of laboratory environmental fate studies revealed that clothianidin
possesses time-dependent and non-linear sorption characteristics. The higher
binding of clothianidin to soil than predicted by assuming equilibrium conditions
over a relatively short time period lowers the potential mass available for
leaching. The standard batch equilibrium sorption coefficients underestimate
the binding of clothianidin to soil and, therefore, do not accurately represent
how clothianidin behaves in the environment. The time-dependent sorption
mechanism is critical to a complete understanding and evaluation of the potential
leaching of clothianidin. Model simulations of nine studies indicate that models
that do not account for non-linear sorption will tend to over-predict the mobility
of clothianidin in the field. This is especially true when a lower-bound Koc
value is selected for linear sorption modeling and for coarse-textured soils. For
coarse-textured soils with low organic matter, use of kinetic sorption and use of
the upper-bound Koc, achieved good model agreement with field observations of
clothianidin residues. When kinetic sorption was accounted for in the FOrum for
Co-ordination of pesticide fate models and their USe (FOCUS) Pesticide Root
Zone Model, estimated residues were in good agreement with observed residues.
This underscores the importance of considering non-linear and time-dependent
sorption characteristics in assessing leaching potential when sufficient data are
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available to characterize these phenomena, and that using linear sorption may
significantly over-predict the potential for leaching for a variety of different
scenarios. Measurement of sorption parameters in a specific soil is required
to better predict mobility behavior, especially in vulnerable soils under high
water-input conditions.
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Chapter 18

Evaluation of the FOCUS-PRZMModel
for Predicting Acetochlor Leaching

and Persistence in Soil
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Hamilton, New Zealand
*E-mail: qma@exponent.com.

Sorption of pesticides in soil is often time-dependent, with
increasing adsorption with time. This time-dependent
sorption kinetics can lead to groundwater concentrations
that are significantly different from those predicted using an
equilibrium adsorption model such as that employed in the
U.S. EPA PRZM-GW model. Currently, the U.S. EPA is
revising PRZM-GW to incorporate the time-dependent sorption
kinetics that is used in FOCUS-PRZM3.5.2 model. While
PRZM-GW with such time-dependent sorption kinetics is not
yet available, the influence of the two sorption hypotheses
on predicted acetochlor leaching and persistence in soil was
evaluated using the FOCUS-PRZM3.5.2 model. This model
is capable of simulating both equilibrium and time-dependent
sorption processes, with the latter being modeled by a
two-site, equilibrium and kinetic sorption model. The
FOCUS-PRZM3.5.2 model was parameterized separately with
the equilibrium adsorption model as well as the time-dependent
sorption model. The equilibrium adsorption coefficient (Kd)
was obtained from a laboratory batch equilibrium study, while
the kinetic sorption parameters for the two-site, time-dependent
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sorption model were obtained by model calibration by
minimizing the root mean square errors between measured and
simulated acetochlor mass in the soil profile. The optimized
kinetic sorption site is 4% of the total sorption site, indicating
that acetochlor was primarily in equilibrium over the course
of the study. Still, the calibrated time-dependent sorption
model much better predicted the persistence and distributions
of acetochlor in the soil profile than the equilibrium adsorption
model did. This is especially obvious for the later periods after
acetochlor application. Limited leaching of acetochlor in the
soil makes it difficult to look further into the capability of the
sorption models for leaching prediction. A sensitivity analysis
indicates that the FOCUS-PRZM-predicted concentration
distributions of acetochlor in the soil profile are sensitive to
kinetic sorption parameters.

Introduction

Sorption of pesticides in soil has frequently been shown to increase with
time (1–3). This sorption characteristic has often been referred as time-dependent
sorption or nonequilibrium sorption. Time-dependent sorption kinetics have been
reported to better describe pesticide behavior (1, 3, 4). It has also been used
to refine estimates of predicted environmental concentrations in groundwater
in Europe (5). As more evidence emerges to indicate that pesticide sorption is
often time-dependent rather than in equilibrium, there is a need to incorporate
time-dependent sorption kinetics into the current groundwater models to better
estimate pesticide concentrations in groundwater. However, the time-dependent
sorption kinetics has yet to be incorporated into the U.S. Environmental Protection
Agency’s (EPA’s) groundwater models such as the PRZM-GW model, although
work is currently underway to expand the capability of the model with such a
kinetic sorption feature as used in the FOCUS-PRZM3.5.2 model. As such, the
FOCUS-PRZM3.5.2 model is used to evaluate the leaching and persistence of
acetochlor in soil as affected by equilibrium and kinetic sorption models.

Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-
phenyl)acetamide] is a herbicide that is widely used to control a wide spectrum
of weeds. Data on acetochlor equilibrium adsorption and degradation under
controlled laboratory conditions and dissipation under field conditions have
been reported previously (4). These data were used for the current study. The
time-dependent sorption of acetochlor is unavailable. Thus, the optimized kinetic
sorption parameters by model calibration were used for the current study.

The objective of this study was to evaluate the performance of the
FOCUS-PRZM3.5.2 model for estimating acetochlor persistence and
concentration distributions in the soil profile as affected by equilibrium and
kinetic sorption models.
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The FOCUS-PRZM3.5.2 Model

The FOCUS-PRZM3.5.2 was developed based on the EPA’s Pesticide Root
Zone Model (PRZM) (6). PRZM is a one dimensional finite-difference model
for prediction of the vertical movement of chemicals in soil by chromatographic
leaching. PRZM3.12.2 is currently used by U.S. EPA for exposure assessment.
The FOCUS-PRZM3.5.2 was developed from PRZM3.12 with expanded
capabilities for using the nonlinear Freundlich equilibrium adsorption model, the
ability to make the degradation rate a function of soil moisture, the capability to
consider increasing sorption with time and implementation of exact first-order
kinetics for metabolites. The time-dependent sorption model is based on a
two-site sorption model (1, 7), which assumes that sorption in a fraction (f) of
the sorption sites is in equilibrium, while sorption in the remaining sites is in
non-equilibrium and time dependent, as follows:

where S1 and S2 are the concentrations on equilibrium and kinetic sorption sites,
respectively; Kd is equilibrium adsorption coefficient; C is the concentration in soil
solution; α is the first-order desorption rate constant; and t is time.

FOCUS-PRZM3.5.2 does not use f as a model input parameter, but
rather it defines a parameter, fne as an input. The fne is defined as the ratio of
non-equilibrium sites to equilibrium sites. In addition, when the time-dependent
sorption model is employed, FOCUS-PRZM3.5.2 uses the half-life in the
equilibrium phase (DT50eq) to determine pesticide degradation in soil. Thus, the
degradation half-life derived from the laboratory degradation study (DT50tot)
needs to be adjusted using the following equation:

Materials and Methods

Terrestrial Field Dissipation Study

Dissipation of acetochlor in the field of a Hamilton clay loam (Humic
Hapludull, illuvial spadic) was determined in nine field plots (including three
untreated plots) at two application rates (2.5 and 5.0 kg a.i./ha) near Hamilton,
New Zealand. The top soil (0-20 cm) consisted of 25%, 33%, and 2.7% of sand,
clay, and soil organic carbon, respectively. Details were provided in (4). Briefly,
Roustabout® (0.84 kg a.i./L) was applied in 300 L of water per hectare to the soil
surface at the targeted application rates, with each application rate having three
replicates. Soil cores were collected up to 100 cm below the surface to determine
acetochlor residues in the soil on the day of treatment and at 7, 14, 21, 28, 41, 55,
84, 117, and 147 days after the treatment.
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Equilibrium Adsorption Measurements

The equilibrium adsorption coefficient (Kd) was determined using the
modified Organization for Economic Co-operation and Development (OECD) (8)
procedure. The determined Kd value is 3.3 L/kg (4).

Estimates of Kinetic Sorption Parameters

The time-dependent sorption study was not conducted for acetochlor. As
a result, the kinetic sorption parameters (fne and α) were obtained by model
calibration by minimizing the root mean square errors between measured and
simulated acetochlor mass in the soil profile at 2.5 kg a.i./ha application rate and
then examined whether or not the calibrated model improved the predictions
of the measured acetochlor mass at high application rate (5.0 kg a.i./ha). The
optimized fraction of the equilibrium adsorption sites (f) is 0.96. Thus, fne is
0.042. The optimized desorption rate constant (α) is 0.012 d-1. The uncertainty of
these calibrated parameters on predicted acetochlor persistence and distributions
in the soil profile was evaluated in the sensitivity analysis, as described later.

Degradation Study

Degradation of acetochlor was determined in the laboratory under a range
of temperature (10 °C, 22 °C, and 30 °C) and soil moisture (40%, 60% and 80%
maximum water holding capacity) regimes. The half-life at 22 °C and 60%
maximum water holding capacity (DT50tot) was 19.5 days. The degradation
half-life in equilibrium phase (DT50eq) for FOCUS-PRZM3.5.2 model is
calculated to be 18.7 days according to eq 3. The soil moisture correction factor
(Walker’s constant) for degradation half-life adjustment is 0.14.

Modeling Acetochlor Persistence and Leaching in Soil Using the
FOCUS-PRZM3.5.2 Model

The FOCUS-PRZM3.5.2 model was parameterized with parameters (e.g.,
Kd and DT50 values) determined in the laboratory studies under well controlled
conditions. Measured soil properties (4) from an untreated plot were used
in the model. The climatic data needed for the FOCUS-PRZM3.5.2 model
were obtained from a neaby weather station. The information was integrated
into FOCUS-PRZM3.5.2 model to predict the persistence and concentration
distributions of acetochlor in the soil profile at an application rate of 5.0 kg
a.i./ha. The predictions were then compared with those measured in the field to
evaluate the performance of FOCUS-PRZM3.5.2 model with the equilibrium and
time-dependent sorption options.

A sensitivity analysis was also conducted for the FOCUS-PRZM3.5.2 model
to evaluate the sensitivities of the model to fne and α by varying fne from an
optimized value of 0.042 to 0.5, and varying α from an optimized value of 0.012
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d-1 to 1.2 d-1. The sensitivity analysis was conducted for fne and α because they
are calibrated kinetic sorption parameters with potentially large uncertainty. The
predicted acetochlor persistence and concentration distributions in the soil profile
were then compared with those predicted with the optimized fne or α value to
evaluate the sensitivity of the model predictions to these parameters.

Results and Discussions

Measured and Predicted Acetochlor Persistence in Soil

Figure 1 shows the measured and predicted acetochlor residues in the soil
profile over the entire period of study of approximately five months, with kinetic
sorption parameters obtained by model calibrations (i.e., fne = 0.042 and α = 0.012
d-1). Themeasured residues decreased from 3.917 kg a.i./ha on the day of treatment
to 0.032 kg a.i./ha at 147 day after the treatment. In contrast, FOCUS-PRZM3.5.2
with the equilibrium adsorption model predicted 4.854 kg a.i./ha and 0.014 kg
a.i./ha of acetochlor residues for the day of treatment and at 147 day after the
treatment, respectively. FOCUS-PRZM3.5.2 with the time-dependent sorption
model predicted 4.848 kg a.i./ha and 0.030 kg a.i./ha of acetochlor residues for
the day of treatment and at 147 day after the treatment, respectively. Overall, the
kinetic sorption model of FOCUS-PRZM3.5.2 model better predicted residues of
acetochlor in the soil than the equilibrium adsorption model did, especially for
later periods of the study (Figure 1).

Figure 1. Measured and FOCUS-PRZM-predicted acetochlor persistence in
the soil profile.
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The measured residues (3.917 kg a.i./ha) on the day of treatment were
significantly smaller than the projected application rate of 5.0 kg a.i./ha. This
is probably caused by spray drift during the application. When the measured
residues on the day of treatment were used as the initial application rate,
FOCUS-PRZM3.5.2 better predicted acetochlor persistence in the soil with both
sorption models, especially during the first month after treatment (Figure 2). The
predicted residues on the day of application with this refined application rate
were 3.805 kg a.i./ha and 3.801 kg a.i./ha by the equilibrium and kinetic sorption
models, respectively, while the predicted residues at 147 day after the treatment
were 0.011 kg a.i./ha and 0.024 kg a.i./ha by the equilibrium and kinetic sorption
models, respectively.

Figure 2. Measured and refined FOCUS-PRZM predictions of acetochlor
persistence in the soil profile.

Measured and Predicted Acetochlor Distributions in the Soil Profile

The predicted acetochlor concentrations in the soil profile were compared
with those measured in the field. Figure 3 shows the comparisons between
measured and predicted acetochlor concentrations at 28, 41, 84, and 147 days
after treatment. Both sorption models reasonably predicted the trend and residue
levels of acetochlor in the soil profile at 28, 41, and 84 days after treatment.
At 147 day after the treatment, the equilibrium adsorption model overpredicted
the leaching of acetochlor in the soil profile; in contrast, the time-dependent
kinetic sorption model again adequately predicted the trend and residue levels of
acetochlor in the soil profile (Figure 3).

The majority of acetochlor residues were retained in the top 5 cm soil during
the entire period of study, only trace levels of acetochlor were detected in the 5-10
cm segment. Limited leaching of acetochlor in the soil profile makes it difficult to
look further into the capability of the sorption models for leaching prediction.

362

  

In Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil; Kookana, et al.; 



Figure 3. Measured and FOCUS-PRZM-predicted acetochlor concentrations in
the soil profile at 28, 41, 84, and 147 days after application.

Figure 4. Measured and refined FOCUS-PRZM predictions of acetochlor
concentrations in the soil profile at 28, 41, 84, and 147 days after application.
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When the the measured residues on the day of treatment were used as the
initial application rate in FOCUS-PRZM3.5.2, the model better predicted the
distributions of acetochlor in the soil profile because the quantity of acetochlor in
the soil profile was better simulated, as shown in Figure 4. Again, both sorption
models reasonably predicted the trend and residue levels of acetochlor in the soil
profile at 28, 41, and 84 days after treatment. The equilibrium adsorption model
overpredicted acetochlor leaching in the soil profile at 147 day after treatment,
while the kinetic sorption model better predicted acetochlor leaching, as occurred
with the projected application rate (5.0 kg a.i./ha). This is because the sorption
parameters for the refined modeling were the same as those for the unrefined
modeling.

Sensitivity of FOCUS-PRZMModel to Kinetic Sorption Parameters

The sensitivities of FOCUS-PRZM3.5.2 model to the ratio of non-equilibrium
sites to equilibrium sites (fne) and to the desorption rate (α) were analyzed by
changing fne from an optimized value of 0.042 to 0.5, and changing α from an
optimized value of 0.012 d-1 to 1.2 d-1. When fne or α was changed, all other model
parameters were kept unchanged.

Figure 5 compares the measured and predicted persistence of acetochlor in
the soil profile at an application rate of 5.0 kg a.i./ha, as affected by fne. With a fne
value of 0.5, the DT50eq became 13 days (eq 3). FOCUS-PRZM3.5.2 predicted
initially faster and subsequently slower dissipation of acetochlor residues in soil
than it predicted with a fne value of 0.042 (Figure 5). This indicates that the
predicted persistence by the FOCUS-PRZM3.5.2 model is sensitive to fne. The
initial faster dissipation resulted from a shorter DT50eq and from the fact that
there was sufficient amount of acetochlor available for degradation. With time, the
amount of acetochlor available for degradation became limited and the desorption
rate (α = 0.012 d-1) became a limiting factor. Because the desorption rate was
smaller than the effective degradation rate in the equilibrium phase, the overall
dissipation rate was then controlled by the desorption rate, resulting in subsequent
slower dissipation.

The influence of fne on predicted acetochlor distributions in the soil profile
was examined for days 41 and 147 after treatment (Figure 6). When fne was
increased from 0.042 to 0.5, FOCUS-PRZM3.5.2 predicted more acetochlor
residues to be retained near the soil surface layers with time rather than to leach
to deeper soil profiles. This is expected and is one of the major characteristics
of time-dependent sorption that retains more pesticide near the soil surface
layers from leaching. The sensitivity of the predicted ascetochlor concentration
distributions in the soil profile to the kinetic sorption parameter (fne) further
indicates that accurate determination of fne is important for better prediction of
leaching.

Figure 7 compares the measured and predicted persistence of acetochlor in
the soil profile as affected by α, with α value increasing from 0.012 d-1 to 1.2
d-1. An α value of 1.2 d-1 represents almost immediate desorption of the adsorbed
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acetochlor (it is equivalent to a first-order desorption half-life of approximately
0.6 days). Therefore, it is expected that the kinetic sorption model with an α value
of 1.2 d-1 should predict essentially the same pattern of acetochlor persistence as
the equilibrium adsorption model. This was observed as shown in Figure 7, which
further indicates that the kinetic sorption model of the FOCUS-PRZM3.5.2 model
behaved as expected.

Figure 5. Sensitivity of FOCUS-PRZM model predictions of acetochlor
persistence in the soil profile to fne at an application rate of 5.0 kg a.i./ha.

Figure 6. Sensitivity of FOCUS-PRZM model predictions of acetochlor
distributions in the soil profile to fne at an application rate of 5.0 kg a.i./ha.
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Figure 7. Sensitivity of FOCUS-PRZM model predictions of acetochlor
persistence in the soil profile to α at an application rate of 5.0 kg a.i./ha.

The sensitivity of α on predicted acetochlor distributions in the soil profile
was examined for days 41 and 147 after treatment (Figure 8). When the α value
was increased from 0.012 d-1 to 1.2 d-1, the FOCUS-PRZM3.5.2 model predicted
approximately the same acetochlor distributions in the soil profile at 41 day after
treatment, but it predicted more acetochlor leaching at 147 day after treatment.
As described previously, when the desorption rate was sufficiently fast, the kinetic
sorption model approached to the equilibrium adsorption model, which predicted
more rapid leaching than that observed.

The sensitivity of the predicted acetochlor persistence and concentration
distributions in the soil profile to the kinetic sorption parameters (fne and α)
further indicates that accurate determinations of fne and α are important for better
prediction of acetochlor leaching.

Figure 8. Sensitivity of FOCUS-PRZM model predictions of acetochlor
distributions in the soil profile to α at an application rate of 5.0 kg a.i./ha.
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Conclusions

The FOCUS-PRZM3.5.2 model adequately predicted the persistence and
concentrations of acetochlor in the soil profile with either sorption model, overall.
The model tended to overpredict the persistence during the first month after
application and underpredict the persistence from four months onward after the
application when the projected application rate was used in the modeling. The
predicted persistence during the first month after application was improved with a
refined application rate that was measured on the day of application. Acetachlor
never leached below 10 cm from the soil surface during the entire period of
study of approximately five months. Limited leaching of acetochlor in the soil
makes it difficult to look further into the capability of the sorption models for
leaching prediction. The FOCUS-PRZM3.5.2 model with the kinetic sorption
assumption adequately predicted acetochlor leaching for the entire period of
the study. In contrast, the FOCUS-PRZM3.5.2 model with the equilibrium
adsorption assumption overpredicted the leaching from four months onward after
application. A sensitivity analysis of the kinetic sorption parameters indicated
that leaching prediction was sensitive to both kinetic sorption parameters (fne
and α). Therefore, accurate determinations of fne and α are important for better
prediction of acetochlor leaching.
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